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Abstract
GPU-accelerated database systems promise significant performance
gains for analytical workloads, but their adoption remains limited
due to fundamental data movement bottlenecks when the dataset
does not fit in GPU memory. Compression can significantly acceler-
ate data movement, but when the dataset does not fit in GPU mem-
ory, the choice of compression algorithm (lightweight or heavy-
weight) can have a wide range of effects, including a potential
slowdown compared to uncompressed data.

This paper analyzes the impact of compression on query exe-
cution performance for larger-than-GPU-memory datasets stored
on arrays of NVMe SSDs. We integrate pipelined data movement
and on-GPU decompression into a GPU query processing engine.
Our experiments show that when storage bandwidth is limited,
compression always accelerates query execution, with lightweight
compression incurring a higher speedup than heavyweight com-
pression. As storage bandwidth is increased, however, compression
can incur a speedup or a slowdown, depending on the processing
intensity of the query. We quantify the impact of compression on
query execution time with a microbenchmark that varies both stor-
age bandwidth as well as the selectivity and number of joins. We
find that heavyweight compression suffers from performance degra-
dation with less processing-intensive queries and lower storage
bandwidths than lightweight compression.

We further analyze the compression algorithm’s impact on GPU
utilization using an extended roofline model incorporating the SSD-
to-GPU bandwidth bottleneck. For queries from the Star Schema
Benchmark, the results show that while lightweight compression
drastically increases the count of executed instructions, the im-
provement in effective storage bandwidth results in improved query
execution times.
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1 Introduction
Using graphics processing units (GPUs) to accelerate analytical
query processing offers significant performance improvements
when the dataset fits in GPU memory [8, 20, 41]. Nevertheless,
when data is not already in GPU memory, data movement is the
primary query execution bottleneck, limiting the adoption of GPU-
enabled DBMS due to constraints of the interconnect bandwidth [19,
28, 35, 39].

Despite the inherent interconnect limitations, using arrays of
PCIe-attached NVMe drives is a promising approach for
cost-effective query processing with large data sets. Arrays of
NVMe drives now offer 10s-100s of GB/s of storage bandwidth,
substantially closing the performance gap between DRAM and stor-
age [22, 23]. Recent work has shown to exploit arrays of NVMe
drives as a cost-effective solution to achieve near-in-memory perfor-
mance with larger-than-memory data in CPU-based data manage-
ment systems [23, 24, 32, 33]. However, unlike modern CPUs, which
have up to 128 PCIe lanes [3], GPUs typically have a maximum of 16
PCIe lanes and, therefore, cannot benefit from the same amount of
raw storage bandwidth as CPUs. Consequently, GPU-based query
processing requires techniques different from CPU-based systems
to benefit from fast and efficient NVMe storage.

An intuitive approach to leverage NVMe storage for GPUs is
data compression. By reducing the volume of data that is moved,
the available bandwidth can be better utilized [10, 18]. Further,
as real-world datasets become increasingly redundant [31, 44, 49],
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compression techniques can achieve even greater compression ra-
tios and therefore higher effective data movement bandwidths. By
storing data compressed before movement and decompressing it
on the fly, systems can reduce their storage footprint and alleviate
pressure on interconnect bottlenecks.

Following preliminary results on moving data compressed to the
GPU [26, 48], research has shifted towards in-GPU-memory pro-
cessing [7, 12, 41, 42], targeting a use case that assumes the dataset
is small enough to fit in GPU memory and has already been loaded
(or cached). To achieve high throughput, such approaches often in-
troduce new lightweight encoders and rely on manually optimized
GPU kernels tailored to specific operator pipelines, maximizing
performance within the constraints of in-memory execution. This
raises the question of how compression influences the performance
of systems that load data to the GPU during query execution in
order to operate on data that exceeds the GPU memory capacity.
Recently, Boeschen et al.[10] proposed a GPU-in-data-path archi-
tecture to accelerate table scans by streaming data compressed with
heavyweight compression directly from SSDs to the GPU, where it
is decompressed on the fly as part of a table scan. Previous work has
introduced new lightweight compression for in-GPU-memory pro-
cessing and leveraged heavyweight compression for GPU-NVMe
systems. The design space of compression for GPU query process-
ing, especially in larger-than-GPU-memory scenarios, is complex,
with interactions and interference between decompression and
query processing itself.
Contributions. We conduct experiments to answer the follow-
ing questions: (1) How does the choice of compression algorithm
(lightweight vs heavyweight) impact the performance of GPU-
accelerated analytical workloads? (2) Which query parameters de-
termine the performance of compression algorithms? (3) How does
streaming decompression during query execution affect GPU uti-
lization?

We extend a GPU query processing engine to pipeline and over-
lap, data movement, decompression, and query processing. We eval-
uate this system along three axes: (1) NVMe-to-GPU bandwidth; (2)
data compression, where we assess GPU-optimized heavyweight
and lightweight compression; and (3) query characteristics such as
selectivity and number of joins that influence the query process-
ing intensity. We analyze performance using a larger-than-GPU-
memory dataset and assume a cold cache which requires moving
data from NVMe storage to the GPU during query execution.

Our experimental study leads to three key findings that will guide
future practitioners and researchers working on GPU-accelerated
query processing systems:

(1) We identify the key factors that govern whether compres-
sion improves or degrades query performance: storage band-
width, query complexity (e.g., number of joins), and selec-
tivity. Specifically, we find that beyond four NVMe drives,
in queries with more than three joins, and when selectivity
exceeds 50%, decompression begins to compete with query
execution for GPU resources. In these cases, even efficient
lightweight compression can underperform compared to
uncompressed execution (Section 4.1).

(2) We demonstrate that compression consistently improves
query execution performance across all tested SSBworkloads

when the system is storage-bound (e.g., using a single NVMe
drive), with speedup factors closely aligning with compres-
sion ratios. However, as storage bandwidth increases, heavy-
weight compression schemes may degrade performance due
to their higher decompression overhead. By contrast, light-
weight compression continues to deliver speedups even un-
der high-bandwidth conditions (Section 4.2).

(3) We apply a modified roofline model to analyze the storage-
boundedness of SSB queries. Unsurprisingly, we find that
query execution with uncompressed data underutilizes the
GPU resources and is heavily storage-bound. However, we
also find that while query execution with lightweight decom-
pression results in a drastic increase, by up to 28.6× more, in
the number of instructions executed, query execution time
still improves due to the reduced data movement to the GPU
(Section 4.3).

The rest of the paper is organized as follows: section 2 introduces
the background on compression algorithms and the trade-offs for ef-
ficient decompression for GPU query processing. Section 3 provides
an overview of the system we use for analysis and howwe integrate
pipelined decompression with query execution. Our experimental
results follow in section 4 with related work and conclusions in
section 5 and section 6, respectively.

2 Compression in GPU-Accelerated Analytics
GPU databases utilize custom lightweight and heavyweight com-
pression techniques. Due to GPU memory capacity constraints
when processing analytical queries, pipelining and streaming data
movement and decompression are necessary to alleviate the en-
suing bandwidth bottleneck. This section introduces the related
algorithms and tradeoffs for efficient query processing.

2.1 Lightweight vs. Heavyweight Compression
Lightweight encoding schemes, such as run-length encoding (RLE),
dictionary encoding [9], delta encoding, packing, bitmaps [13],
FSST [11], XOR [37], Null suppression [40], and learned schemes [21,
27], are designed to minimize computational overhead. These meth-
ods can perform exceptionally well on specific types of data, such
as strings, integers, and floating-point values, especially when the
data exhibit patterns like high repetitiveness and serial correlation
or are sorted or clustered. Their simplicity allows for the possibility
of query execution while decoding the data (kernel fusion [42]),
further reducing latency and computational costs.

Cascaded [48] encoding applies multiple lightweight compres-
sion techniques. It combines bit-packing, RLE, and delta encoding,
leveraging the strengths of each approach. Nvidia’s implementa-
tion [2] is optimized for GPUs: bit-packing aligns values within
machine words, RLE and delta encoding use efficient prefix sum
operations from the CUB [1] library.

Heavyweight encoding techniques also referred to as general-
purpose compressors (the most used ones are based on Lempel-
Ziv [25] compression), are designed to achieve high compression
ratios by identifying and exploiting long repetitions in the input
data, which are stored as match copies (length + distance). By
analyzing large chunks of data, heavyweight schemes achieve high
compression on data with high redundancy. However, this comes at



The Effectiveness of Compression for GPU-AcceleratedQueries on Out-of-Memory Datasets DaMoN ’25, June 22–27, 2025, Berlin, Germany

the cost of increased computational overhead, as they often require
full decompression before query execution, which can introduce
additional latency.

DEFLATE applies Huffman entropy coding [29] to further im-
prove compression ratios; this additional entropy coding stepmakes
it particularly effective for datasets with high redundancy but also
slower. To enhance parallel decompression for GPUs, GDeflate [2]
optimizes DEFLATE [16] by restructuring the bitstream into 32 in-
dependent sub-streams, enabling 32-way parallelism during decom-
pression. It eliminates data dependencies by ensuring that match
copies (length + distance) remainwithin the same sub-stream, avoid-
ing cross-thread synchronization. In contrast, LZ4 is a byte-oriented
compression scheme that does not use entropy coding, generally
resulting in lower compression ratios than GDeflate but with faster
encoding/decoding. To efficiently parallelize LZ4, the data is divided
into a series of independent blocks, with each block compressed or
decompressed concurrently.

2.2 Pipelined Decompression
Due to limited GPU memory capacity, streaming decompression,
i.e., decompressing smaller units as they are moved to the GPU
rather than moving then decompressing entire columns or tables
at a time, is necessary for GPU query execution over larger-than-
GPU-memory datasets. For example, the uncompressed size of the
lineorder columns scanned by SSB Q1.1-3 at scale factor 1000 is
96 GB while the compressed size with Cascaded compression is
36.5 GB (see Table 1). Even though the compressed columns will
just fit in the 48 GB of an Nvidia A40 or more comfortably in the
80 GB of an A100, there is not sufficient memory capacity to allocate
memory for the decompressed columns.

Query Raw LZ4 GDeflate Cascaded
GB GB (ratio) GB (ratio) GB (ratio)

Q1.1 96 65.7 (1.46) 49.0 (1.96) 36.5 (2.63)
Q2.1 96 79.9 (1.20) 75.0 (1.28) 56.5 (1.70)
Q3.1 96 65.5 (1.47) 77.0 (1.25) 45.4 (2.11)
Q4.1 144 110.8 (1.30) 112.7 (1.28) 75.4 (1.91)
Q*J 144 107.3 (1.34) 103.6 (1.39) 69.4 (2.07)

Table 1: Uncompressed and compressed data sizes (in GB) and
compression ratio using different compression schemes for
SSB queries. Cascaded always achieves the lowest compressed
data size, and therefore the highest compression ratio.

Further, for performance data movement, decompression and
query processing should overlap, i.e., be pipelined. The data move-
ment bottleneck is exacerbated if data movement and decompres-
sion occur serially with respect to the execution of the query op-
erators. Following the previous SSB example, unpipelined data
movement/compression will result in the query operators stalled
for 1.1s, even assuming decompression is instantaneous (and as-
suming the theoretical PCIe 4.0 16x bandwidth of 31.5 GB/s, the
practical bandwidth upper bound is lower.)

(a) Control flow

(b) Data flow

Figure 1: Query processing pipeline in Proteus extended with
pipelined decompression. (a) Control flow with operators
executing on the CPU in blue, and on the GPU in green. (b)
The data flow illustrating the directmovement of compressed
row groups to the GPU and decompression on the GPU. For
each row-group, the mem-move operator makes the CPU-
side API calls that initiate both operations.

3 System Design
We conduct experiments using Proteus [14, 15, 17, 35, 39], a code-
generating query processing engine with support for query execu-
tion on CPU/GPU platforms. We extend the engine with pipelined
decompression for compressed table scans.

Proteus utilizes a push-based processing model and a columnar
data format. Data is moved in row groups, each composed of a
vector of values for each scanned column. The maximum vector
size within a row group is 2 MiB. Relational operators are code-
generated, and a pipeline of relational operators is fused into a single
kernel. At runtime, a cpuTogpu operator executing on the CPU
transfers control flow to the GPU by launching the GPU operator
pipeline kernel. The arguments for each operator pipeline kernel
launch include pointers to GPU memory for a row group. So, for
a table scan, the operator pipeline kernel is invoked once for each
row group, with the pipeline state maintained in memory across
kernel invocations. Within a GPU operator pipeline kernel, each
thread operates on a tuple at a time. On Nvidia GPUs the default
number of thread blocks for kernel launches is twice the number
of streaming multiprocessors with 1024 threads per thread block.

Figure 1a presents a physical plan incorporating pipelined decom-
pression, illustrating the control flow between CPU and GPU while
fig. 1b shows the accompanying data flow during query execution.
For ease of illustration, fig. 1 depicts a single pipeline physical plan
without pipeline breakers, such as hash joins. The scan operator
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emits a stream of records containing the metadata necessary to load
a row group from storage. Data movement to the GPU is performed
by the mem-move operator, which executes on the CPU. The mem-
move operator initiates I/O using the synchronous cuFile (version
2.12) API using NVIDIA’s GPU Direct Storage (GDS) technology [6]
to move data directly from NVMe drives into GPU memory with-
out first going through a CPU memory buffer (●1 in fig. 1). We
use the synchronous API because we were unable to saturate the
GPU interconnect bandwidth with the asynchronous API, a result
replicated by other papers [10]. We extend the mem-move operator
to also perform decompression using the asynchronous nvCOMP
(version 4.2) APIs to decompress the data, which internally launches
the decompression kernels on the GPU, overlapping data move-
ment and decompression within each mem-move operator instance
and writing the decompressed data back to global memory (●2 in
fig. 1). In order to saturate the interconnect bandwidth when using
multiple NVMe drives, we use 16 parallel mem-move instances.
An initial router operator [15] after the scan operator routes row
group metadata records to the mem-move instances. A router main-
tains an asynchronous queue for each consumer. A second router
is placed between the mem-move instances and the cpu2gpu op-
erator instance. This router adapts from the CPU operator degree
of parallelism (16) to the GPU operator degree of parallelism (the
number of GPUs), and routes records containing the pointers to
GPU memory for the row group. The router’s asynchronous queue
results in pipelined and overlapping decompression and relational
operator pipeline kernel execution on the GPU.

4 Experimental Evaluation
Hardware. Our evaluation is conducted on a server with a 2x24-
core AMD EPYC 7413 processor, having two threads per core, to-
talling 96 threads and 256 GB of DRAM. Each CPU socket is con-
nected with a single Nvidia A40 GPU with 48 GB GDDR6 memory
using 16 PCIe 4.0 lanes and 12 Corsair MP600 Pro NVMe drives,
each using 4 PCIe 4.0 lanes. The theoretical maximum bandwidth of
the GPU interconnect is 31.5 GB/s. We observe 86 GB/s sequential
read bandwidth from all 12 NVMe to system DRAM when using
fio. All experiments were conducted on a single socket and utilized
all 12 NVMe drives unless otherwise stated. The GPU interconnect
bandwidth is saturated when using between 4 and 8 NVMe drives.
Compression Algorithms.We evaluate two heavyweight com-
pression algorithms, LZ4, and GDeflate [2, 16], as well as the light-
weight NVIDIA nvCompCascaded [2]. Decompression is performed
entirely on the GPU using nvCOMP (version 4.2). For all compres-
sion algorithms, we use a chunk size of 64 KiB.
Dataset. We use the Star Schema Benchmark (SSB) [36] queries
and dataset at scale factor 1000. For string columns, regardless of
the compression scheme used, we apply dictionary encoding during
data preparation. Each unique string value is mapped to a 4-byte
integer ID using a static ordered dictionary constructed from the full
column. Dictionaries are stored on the NVMe drives and loaded into
systemDRAMduring query execution. This transformation reduces
both data size and decoding overhead during query execution. The
resulting integer values are stored on the SSD drives and treated
as regular integer columns, supporting equality comparisons and

range predicates. More complex operations, such as general “LIKE”
pattern matching, are not supported.

Without compression each lineorder column is 24GB. SSB queries
consist of four groups, within each group, the query selectivity de-
creases with the rank; for example, Q1.3 is more selective than Q1.2,
which is more selective than Q1.1. Query groups 1-3 scan 96 GB and
group 4 scans 144 GB per query (see Table 1). In all query groups,
the scan data volume is dominated by the lineorder columns.

4.1 Sensitivity to Query Characteristics
We evaluate the execution time of a series of microbenchmark
queries using no compression, Cascaded, LZ4 and GDeflate for
varying storage bandwidths by striping the data across different
numbers of NVMe drives. The 5 queries (Q0J, Q1J, Q2J, Q3J, Q4J) are
each over the same 6 columns from the lineorder table of the SSB:
the four foreign key columns and lo_revenue and lo_quantity.
The queries differ by how many dimension tables are joined with
the lineorder table. Q0J performs no joins, Q1J join with date, Q2J
joins with date and supplier and so on for the remaining queries
joining with the other dimension tables in order of dimension table
size. For these queries, Proteus employs a left-deep query plan with
hash joins, where a hash table is built on each dimension table, and
the subsequent probe phases are pipelined across all joins. We vary
the selectivity of the queries with a filter on lo_quantity before
the joins. A higher selectivity results in more random accesses in the
probe phase of the hash joins. No filter is applied to the dimension
tables. Listing 1 shows the SQL for query Q4J. The uncompressed
data scanned by each query is 144 GB. The compressed size of the
data depends on the compression algorithm used: LZ4 107.3 GB,
Cascaded, 69.4 GB, GDeflate 103.6 GB (see Table 1). This workload
enables us to quantify the benefit and potential interference be-
tween compression and query processing because the data moved
to the GPU is essentially the same for all queries, as the dimension
columns are at most, in Q4J, 0.19% of the data volume scanned.

SELECT SUM(lo_revenue)

FROM date, customer, supplier, part, lineorder

WHERE lo_custkey = c_custkey

AND lo_suppkey = s_suppkey

AND lo_partkey = p_partkey

AND lo_orderdate = d_datekey

AND lo_quantity < {FILTER_SELECTIVITY_PARAM};

Listing 1: Microbenchmark query Q4J: Lineorder fact table
joined with four dimension tables.

Figure 2 plots the results of these microbenchmarks. Without
compression, execution time scales proportionally to the storage
bandwidth until the interconnect bottleneck is reached between 4
and 8 drives. For all compression algorithms, the execution time is
further influenced by the selectivity and number of joins, as both
parameters control the amount of work the query processing ker-
nels perform. When using 8 drives, with increasing selectivity there
is a clear inflection point where execution time with decompression
begins to decrease. With more joins, the inflection point begins at
lower selectivity. The inflection point is also at lower selectivities
with the heavyweight compression algorithms (LZ4 and GDeflate)
than with the lightweight Cascaded.
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Figure 2: Query execution time against fact table selectiv-
ity by compression algorithm compared to no compression.
Each row uses an increasing number of drives, and therefore
has greater storage bandwidth. Between 4 and 8 drives, the
storage bandwidth exceeds the GPU interconnect bandwidth.

Lightweight Cascaded compression performs better than the
heavyweight GDeflate and LZ4, because it is tailored for columnar
datasets, where values often exhibit sequential dependencies. This
allows Cascaded to achieve higher data reduction while keeping
decompression efficient. Using one drive at selectivity 0.02 across
all queries, LZ4 achieves a 1.22×-1.23× speedup relative to uncom-
pressed, GDeflate a 1.20×-1.26× speedup and Cascaded a 1.78× to
1.98× speedup.

At lower storage bandwidths, the small compression ratio ad-
vantage of GDeflate (LZ4 1.34, GDeflate 1.39) helps mitigate the
data transfer bottleneck, leading to similar execution times between
the two schemes. However, as storage bandwidth increases, the
impact of compression ratio diminishes, and decompression speed
becomes the dominant factor. At higher bandwidths, LZ4 achieves
a lower execution time than GDeflate because it is a byte-oriented
compression scheme that prioritizes fast decompression.

Discussion. Query execution times with compressed data do not
depend solely on the compression ratio. The decompression kernels

interfere with the query processing kernels, resulting in query
processing kernels taking longer to perform the same work. The
magnitude of the performance impact depends on the amount of
work the query processing kernel performs, as higher selectivities
and more joins lead to increased hash table probes. To quantify this,
we trace the time spent launching and waiting on each GPU query
processing kernel invocation (i.e., not the decompression kernels)
in the cpuTogpu operator within the Q4J pipeline that scans the
lineorder table and probes the dimension hash tables.

Using 8 NVMe drives, our measurements for Q4J show that at a
low selectivity (0.02), the query processing kernels take 0.87s with-
out compression, but increase to 1.16s with Cascaded and 5.8s with
LZ4 due to this interference. At full selectivity (1.0), the baseline
kernel time rises to 6.6s, and with compression, it further increases
to 7.8s for Cascaded and 9.8s for LZ4, demonstrating that the over-
head from interference scales with the underlying query processing
workload. Notably, at low selectivity, these traced probe-side kernel
times are significantly less than the overall query execution time,
primarily because the pipeline is frequently bottlenecked by data
movement and decompression, in addition to the 180- 280ms for
the dimension table build phase, which is not included in the trace.

To understand how compression interferes with query process-
ing, we use the CUPTI PC Sampling API. This allows us to profile
concurrently running kernels with low overhead. At a fixed inter-
val of cycles, CUPTI picks a random active warp on the streaming
multi-processor (SM) and records its scheduler state. The scheduler
state records if and why this warp did not dispatch an instruction,
and if any warp on the SM dispatched an instruction.

The overall SM activity, measured by the proportion of samples
where at least one instruction was dispatched by any warp on the
SM, increases with compression. For instance, at 0.02 selectivity,
this issue ratio rises from 53.5% (no compression) to 58.1% (Cas-
caded) and 61.4% (LZ4); a similar trend is observed at selectivity 1.0
(from 52.1% for no compression to 54.5% for Cascaded and 57.6% for
LZ4, respectively). This indicates that the additional active decom-
pression kernels contribute to overall SM instruction throughput.
However, decompression also results in more overall instructions
and warps being executed, as well as an increase in stalled warps
between low and high selectivity due to increased contention.

Cascaded decompression leads to a sharp increase in warp stalls
stalling due to full memory queues. These stalls occur when warps
are ready to issue memory operations (to global, local, or shared
memory via the Load Store Unit), but are temporarily prevented
from doing so because the dedicated instruction queues leading to
these execution units are full, often due to high demand or down-
stream backpressure in the memory system. At selectivity 1.0, stalls
due to full memory instruction queues stalls nearly double to 10.30%
with Cascaded compared to 5.64% when no compression is used.
At low selectivity (0.02), however, these specific queue stalls are
minimal for Cascaded at 0.23% (even slightly lower than the 0.33%
without compression). Cascaded generates substantial memory
traffic because the Cascaded encoder, as implemented in nvCOMP,
launches up to four separate kernels per data block: the main de-
compression kernel and three additional ones depending on in-
termediate data types. Each of these kernels writes intermediate
results back to shared memory. These stages are necessary for
decoding nested encodings like RLE and delta encodings. While
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(a) Execution time of SSB queries with data stored on 1 NVMe drive.

(b) Execution time of SSB queries with data stored on 8 NVMe drives

Figure 3: Execution time of SSB queries with data stored in
different number of NVMe drives, normalized by execution
time without compression.

prior work [42] has already noted this overhead, our results show
that it still improves out-of-memory query execution times across
most queries at most selectivities in our microbenchmark. Overall,
Cascaded is generally effective, but its multi-stage decompression
process inherently creates significant memory traffic, which can
interfere with the query processing kernel’s own memory demands;
further kernel fusion for Cascaded could mitigate this interference
and enhance performance.

With LZ4 decompression, more stalls are due to compute, which
includes waiting for compute resources to become available or fixed-
latency execution dependencies: the percentage of cycles where
warps are stalled waiting for compute resources is substantially
elevated with LZ4, reaching 40.52% at selectivity 0.02 and 27.87%
at selectivity 1.0, far exceeding the 29.6% at selectivity 0.02 and
10.01% at selectivity 1.0 with Cascaded and 10.15% and 3.53% ob-
served without compression. This highlights the computationally
intensive nature of the LZ4 algorithm with respect to Cascaded.
This implies that LZ4’s primary mode of interference with query
processing kernels is likely through competition for the SMs arith-
metic resources rather than by causing significant congestion in
memory access queues.

4.2 Star Schema Benchmark
In this section, we identify the impact of lightweight and heavy-
weight compression on the full SSB benchmark. In particular, we
show how the performance varies depending on the storage band-
width, as greater storage bandwidth consequently requires greater
decompression throughput.

(a)

(b)

Figure 4: Execution time of SSBQ1.1 (a) andQ3.1 (b) with vary-
ing storage bandwidth using different compression schemes.

Figure 3a plots the execution time for all SSB queries normalized
to the execution time without using compression when the data
is stored on a single NVMe drive. In this scenario, the bandwidth
of the NVMe is the primary bottleneck in query execution. As a
result, the normalized execution time remains stable across each
query group (aligning to the compression ratio of each algorithm
on the scanned columns) since the storage bandwidth constraint
dominates performance, masking the effects of query processing in-
tensity. Cascaded consistently outperforms both LZ4 and GDeflate,
due to its significantly higher compression ratio.

Figure 3b, on the other hand, demonstrates a different behavior.
With increased storage bandwidth, the system transitions away
from being purely storage-bound, and query complexity begins to
play a more significant role in execution time. This trend aligns with
what we observed in the microbenchmark experiments (Figure 2):
as storage bandwidth increases, the computational cost of decom-
pression begins to compete with query execution for resources,
resulting in performance degradation. For example, Q3.1 is slower
than Q3.2, Q3.3, and Q3.4, despite scanning the same volume of
data with the same compression ratio. This is because the joins of
Q3.1 are less selective than the other queries.

Figure 3a and fig. 3b show that, unlike the Q*J queries, GDeflate
demonstrates a substantial speedup on Q1.1, due to a 1.96 compres-
sion ratio compared to LZ4s 1.46 for this query (see Table 1). This
is primarily due to GDeflate’s ability to more effectively compress
lo_discount, which contains only 11 unique values. The entropy
coding in GDeflate efficiently encodes these repeated values, achiev-
ing a higher data reduction than LZ4.

To further illustrate the impact of compression on query exe-
cution, fig. 4 presents the execution time for Q1.1 and Q3.1 across
varying storage bandwidths using different compression schemes.
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For Q1.1 (fig. 4a), compression provides a significant performance
boost at lower bandwidth, while heavyweight decompression re-
sults in slower query execution time than no compression at all for
greater bandwidths. In contrast, Cascaded maintains its speed up
even for higher bandwidths.

Q3.1 (fig. 4b) exhibits a similar trend, but the query performance
using heavyweight compression begins degrading at lower band-
widths than Q1.1. Further, even Cascaded begins to degrade at the
highest bandwidth. Relative to Q1.1, Q3.1 is a processing-intensive
query that includes three joins and a groupby, and so is more sus-
ceptible to interference from decompression.

4.3 Roofline Analysis
The roofline model [45] relates computational performance to mem-
ory bandwidth constraints, helping to identify whether a workload
is compute-bound or memory-bound based on its operational inten-
sity. In this work, we use a roofline to model storage-boundedness
instead by measuring the volume of data loaded from storage and
the instructions executed per byte of data loaded from storage.
This allows us to characterize the resource bottleneck in query
processing when the data is streamed from the NVMe drives to
the GPU during query execution. Naraparaju et al. [30] introduce
a similar compression-enabled roofline analysis to demonstrate
how compression can shift a CPU-based matrix multiplication from
being memory-bound towards compute-bound. While our study
focuses on GPU query processing systems that are storage-bound
because of the storage/interconnect bandwidth rather than memory
constraints, both approaches highlight compression’s potential to
mitigate data movement bottlenecks to achieve more processing-
bound performance.
GPU profiling strategy. Similar to Cao et al. [12], we use Nsight
Compute [5] to obtain kernel execution metrics. However, unlike
Cao et al., where each kernel is launched once when the entire
dataset is already in GPU-memory, our system invokes decompres-
sion and query execution kernels for each row group of data moved
to the GPU. To form a complete view of query execution, we aggre-
gate performance metrics across kernel invocations within a query.
For each query, we aggregate profiling data across more than 70K
and 310K, in the uncompressed and compressed cases, respectively,
kernel invocations of all types.
Rooflines. Figure 5 shows the roofline model characterization for
the execution of SSB queries with and without cascaded decom-
pression. Using four drives (23.76 GB/s of bandwidth when mea-
sured with Nvidia’s gdsio utility [4]), uncompressed execution has
an operational intensity ranging from 1.4-3.7. With compression,
this increases to an operational intensity of 67.1-105.2. Execution
with decompression results in 9.4 to 28.6 times more executed in-
structions. In comparison, the speedup for these queries by using
compression ranges from a 1.4× speedup to a 2.0× speedup. The
operational intensity of Q1.1 increases the most, as it is the least
processing-intensive without compression, and also experiences
the largest speedup in execution time.

More precisely, Q1.1 exhibits the lowest throughput in the un-
compressed setting because it is the least processing-intensive
query. Its limited compute demand (only one join) leads to lower
GPU utilization. Consequently, performance is tightly bound by

storage bandwidth. In the compressed case, most of the workload
shifts to decompression (as we said, we notice from 9.4× to 28.6×
more executed instructions). This makes the operational profiles of
all queries more similar, as the same decompression step dominates
execution. However, Q1.1 stands out in the compressed setting
by achieving the highest throughput. This is because Cascaded
achieves the highest compression ratio on the columns used in Q1.1
(as shown in Table 1), meaning decompression and query process-
ing operate on less (compressed) data compared to the other queries.
As a result, executing query Q1.1, storing the dataset compressed
with Cascaded, appears further to the top-right of the roofline plot,
combining higher operational intensity with greater throughput,
overcoming the storage bandwidth limitations.

This demonstrates that uncompressed execution heavily under-
utilizes the GPU hardware. Thus despite the high instruction count
overhead of decompression, the reduced volume of data transferred
both increases hardware utilization and alleviates the data move-
ment bottleneck, ultimately improving query performance.
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Figure 5: Roofline plot of four SSB queries with and with-
out compression using 4 NVMe drives. The vertical dashed
line marks the boundary between storage-bound (left) and
compute-bound execution (right).

5 Related Work
Our work focuses on streaming compressed data to a single GPU.
Caching mechanisms [34, 35], CPU-GPU co-execution [47], prun-
ing [10], and multi-GPU scenarios [46] remain important avenues
for future research.

GPU DBMS and data compression. It is well known that in
processing larger-than-GPU datasets, the dominant bottleneck is
transferring data to the GPU rather than executing the relational
operators themselves [20]. Recent work [38] demonstrates that this
challenge remains critical, especially when designing efficient data
movement and decompression pipelines.
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Li et al. [26] first demonstrated the potential of data compression
to address the bandwidth discrepancy between GPUs and slower
storage devices in big data analytics. They introduce HippogriffDB,
a GPU-accelerated OLAP system that stores data in a compressed
format and leverages GPU decompression to trade computation
for greater effective I/O bandwidth. It employs run length encod-
ing [43], dictionary encoding, Huffman encoding [29], and delta
encoding to compress tables. Compressing data as much as possible
is not always convenient because it affects query time (more time
is needed for decompression).

Shanbhag et al. [42] build on top of the tile-based execution
model introduced in Crystal [41], combining it with lightweight
compression techniques. Tiles of data are loaded into shared mem-
ory, enabling direct access for subsequent accesses within the same
kernel, which minimizes redundant memory accesses. They inte-
grate lightweight compression methods, such as GPU-FOR, GPU-
DFOR, and GPU-RFOR, the tile-based decompression, into the Crys-
tal framework. By leveraging GPU-shared memory and implement-
ing cascaded compression schemes within a single kernel, the ap-
proach outperforms traditional methods that rely on separate kernel
invocations for each decompression layer. This design also incorpo-
rates the planner from [18] to select optimal compression schemes
based on column properties, further enhancing query performance.

We focus on nvComp Cascaded over GPU-* [42] because it
achieves comparable compression ratios, making it a fair base-
line for evaluating compression impact. While GPU-* offers faster
decompression through in-GPU-memory microarchitectural opti-
mizations, our focus is on a broader system-level perspective in
which data is streamed from storage and storage bottlenecks domi-
nate performance.

A recent paper [12] conducts a detailed analysis of the perfor-
mance bottlenecks in the original Crystal without compression [41]
and other GPU-DBMS on uncompressed data, leveraging micro-
architectural metrics and the roofline model to identify areas for
improvement. The analysis reveals inefficiencies in memory band-
width utilization (particularly DRAM or L2 cache bandwidth). They
demonstrate opportunities for optimization related to kernel fu-
sion, thread termination, and cache utilization through an improved
version of Crystal (Crystal-opt).

Afroozeh et al. [7] focuses on reducing memory pressure and im-
proving decompression efficiency by integrating a new compression
scheme called FastLanesGPU (FLS-GPU). The main idea is to have
tiles of data distributed in a round-robin manner over subsequent
lanes. Thus, a data-parallel kernel can produce subsequent values
from subsequent lanes without needing (expensive) inter-lane data
transfers. FLS-GPU currently only implements bit-packing. Other
common encodings (specifically DELTA, RLE, and DICT) have not
yet been ported to CUDA.

GOLAP [10] proposes a GPU-in-data-path architecture to ac-
celerate table scans by performing data pruning on the GPU and
streaming data compressed with heavyweight compression directly
from SSDs to the GPU, where it is decompressed on the fly as part
of a table scan. GOLAPs GPU-optimized pruning techniques use
computationally intensive summaries (e.g., histograms) to reduce
the volume of data loaded from storage. Our study further rein-
forces the importance of compression schemes tailored for GPUs,

expanding the design space to highlight the cost of decompression
and competing demands for hardware resources.

6 Conclusion and future work
This paper analyzes the performance of pipelined decompression
GPU query processing over NVMe-resident data sets. With limited
storage bandwidth, we find that the execution time of SSB queries
over compressed data improves over no compression in line with
compression ratios for both lightweight and heavyweight com-
pression. However, for storage bandwidth near the interconnect
bandwidth limit, lightweight compression consistently outperforms
heavy-weight compression, and heavy-weight decompression can
even perform worse than no compression.

Through microbenchmarks that vary decisive query parameters
such as selectivity and number of joins, controlling the average
amount of work necessary to process each tuple, we identify when
decompression performance degrades and becomes worse than no
compression. Finally, our storage roofline analysis indicates that
query execution with uncompressed data heavily underutilizes the
GPU. Thus, while lightweight compression dramatically increases
the executed instruction count, the reduced volume of data moved
results in improved query execution times for SSB queries.

One promising direction is the development of even more com-
pressed, compute-intensive, GPU-optimized compression techniques
specifically tailored for columnar data. As shown in our roofline
analysis (Figure 5), current workloads, even with decompression,
remain on the storage-bound side of the spectrum. This suggests
the possibility of compressing the data even more, and shifting fur-
ther right on the roofline, i.e., to increase operational intensity by
introducing additional lightweight transformations or compression
layers, without hitting compute limitations. Future systems could
exploit this to improve overall throughput.

Moreover, future work should extend the scope of query pat-
terns analyzed. While this paper focused on scan- and join-heavy
analytical workloads, exploring other sources of query complex-
ity (such as aggregation, grouping, and window functions) could
provide further insights into the interaction between decompres-
sion and query processing. These patterns may introduce different
contention dynamics on the GPU.

The methodologies employed in this paper will be increasingly
needed to understand and quantify the effectiveness of compres-
sion with future hardware, helping to navigate data movement
bottlenecks. With higher bandwidth interconnects, such as new
PCIe versions or NVLink, it is possible to attain greater bandwidth
between storage and the GPU, shifting the performance inflection
point (relative to query complexity). Consequently, less processing-
intensive queries could perform worse due to GPU resource con-
tention or hitting the limit of GPU decompression. Further, while
next-generation architectures like NVIDIA’s Blackwell include ded-
icated decompression engines designed to accelerate modern for-
mats, which will likely shift the performance bottleneck in the other
direction, benefiting more complex queries. For different ratios of
GPU decompression throughput to interconnect bandwidth, the
performance inflection point of using compression shifts. As inter-
connect and GPU technologies evolve, this ratio will vary, requiring
re-evaluation of the benefit of compression.
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