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ABSTRACT
Accessing input data is a critical operation in data analytics: i) slow

data access significantly degrades performance, and ii) storing ev-

erything in the fastest medium, i.e., memory, incurs high opera-

tional and hardware costs. Further, while GPUs offer increased

analytical performance, equipping them with correspondingly fast

memory requires even more expensive memory technologies than

DRAM; making memory resources even more precious. Existing

GPU-accelerated engines rely on CPU memory for bigger working

sets, albeit at the expense of slower execution. Such a combination

of both memory and compute disaggregation, however, invalidates

the assumption of existing caching mechanisms: i) the processing

tier is highly heterogeneous, ii) data access bandwidth depends on

the access method and compute unit, iii) with NVMe arrays, persis-

tent storage can approach in-memory bandwidth, and iv) all these

relative quantities depend on the current query and data placement.

Thus, existing caching approaches waste interconnect bandwidth,

cache inefficiently, and overall result in suboptimal execution times.

This work proposes HetCache, a storage engine for analytical

workloads that optimizes the data access paths and tunes data place-

ment by co-optimizing for the combinations of different memories,

compute devices, and queries. Specifically, we present how the in-

creasingly complex storage hierarchy impacts analytical query pro-

cessing in GPU-NVMe-accelerated servers. HetCache accelerates

analytics on CPU-GPU servers for larger-than-memory datasets

through proportional and access-path-aware data placement. Our

prototype implementation of HetCache demonstrates a 1.14x-1.78x

speedup of GPU-only execution onNVMe resident data and achieves

near in-system-memory performance for hybrid CPU-GPU execu-

tion, while substantially improving memory efficiency. Overall,

HetCache turns the multi-memory-node nature of such heteroge-

neous servers from a burden into a performance booster.
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1 INTRODUCTION
Modern hardware has revolutionalized analytical query processing:

NVMe arrays offer persistent storage bandwidth that is comparable

to DRAM bandwidth, GPUs offer both high-bandwidth local mem-

ory for fast joins, as well as significant processing power [10, 35,

40, 14, 29], and modern CPUs provide both increased performance,

as well as a hosting platform for coordinating and connecting the

different devices [15]. Yet, as fertile as this new server hardware

landscape is, it also invalidates fundamental concepts about data

access for analytics.

The problem: access heterogeneity in the processing layer.
Existing data caching approaches rely on one or more assump-

tions that are invalidated in modern NVMe- and GPU-equipped

servers. First, many approaches assume that in-memory caching

of a frequently-accessed data page is important, while the type

of queries accessing it is less important [17, 37, 5, 33, 24, 4, 21].

However, with NVMe arrays providing data access bandwidths

that can sustain the processing throughput of many queries, the

importance of the query itself increases: caching two pages that

have the same access frequency can provide significantly different

acceleration depending on whether the query is scan-bound or

processing-bound. Second, many approaches assumed that CPUs

were the only processors and thus could treat the execution layer

as independent of the caching layer. The proliferation of GPUs as

analytical coprocessors, however, exacerbates NUMA effects and

execution imbalances: faster processors consume higher portions

of the input data due to load balancing [6]. As a result, the process-

ing layer is heterogeneous, and haphazardly caching data across

the processors may incur significant inter-device communication

to achieve balanced execution. Finally, many approaches assumed

that only whether a page was cached or not was important for a

query. However, the query selectivity, the query access pattern,

the relative device throughput, and even the data placement and

the interconnects all affect how efficiently each device will access

the data pages. As a result, existing approaches result in wasted

hardware resources and increased memory capacity requirements.

The solution: execution-centric data caching. Our insight is
that most of the wasteful hardware utilization results from caching

decisions that have little impact on query execution, while the

tension between caching decisions and execution originates from

the absence of an appropriate feedback loop across the two layers.

To avoid wasteful hardware utilization, we re-evaluate how caching
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a page in CPU/GPUmemory affects query execution in the presence

of both GPUs and NVMe arrays and propose HetCache, a storage

engine design that exploits these observations to provide execution-

centric data caching on GPU-NVMe servers.

HetCache: Caching & memory efficiency. We see that there

are two main contributing factors regarding the caching efficiency:

the query type and the relative performance of the consuming

devices. Further, there is an input proportion for each query after

which caching more input results in diminishing returns [26], and

a hardware-query-dependent access granularity below which fine-

grained accesses for selective queries boost the caching effect.

HetCache: Caching & accelerators. We pinpoint the tension

between caching and execution to the staged decision-making pro-

cess: the storage layer traditionally places the data into a memory

of its choice, which is incompatible with the flexible query execu-

tion required for hybrid CPU-GPU execution. HetCache alleviates

the tension by enabling a tight integration between the caching

layer and the execution’s data transfers. Traditionally, the caching

layer would decide where to place a page read from storage. This

causes the execution layer to further transfer it during execution

and requires the caching layer to predict the relative device per-

formance to provide a good split of the data across NUMA nodes,

prior to execution. Instead, HetCache lets the execution layer do the

data placement and moves the caching layer into a suggestive role.

Specifically, the execution does the transfers the more performant

way for the current query and the caching layer provides hints to

steer the execution layer towards better long-term configurations.

In the rest of this paper, we show how modern hardware (NVMe

and GPU acceleration) affects analytical engines and provide Het-

Cache, a blueprint for storage engines that i) efficiently exploit

the available memory and storage resources and ii) enable GPU-

accelerated analytical engines to benefit from out-of-memory stor-

age and NVMe arrays.

The contributions of this paper are:

• Analyzes when and why processing out-of-memory data is

a viable alternative, performance-wise, for analytics – and

why processing in-memory data is still a requirement for

performance (Sections 2 and 3).

• Shows that the choice of storage media depends on granu-

larity and query benefit and that the highly NUMA nature

of CPU-GPU-NVMe servers complicates the landscape but

provides significant query benefits (Section 4).

• Proposes HetCache, a storage engine design for analytical

workloads that envisions an impact-oriented caching mech-

anism and thereby enables efficient query processing and

memory utilization in the presence of heterogeneous CPU-

GPU hardware and high-bandwidth storage through propor-

tional and access-path-aware data placement (Section 5).

• We build a prototype implementation of HetCache into Pro-

teus (Section 6) and show that HetCache achieves up to

1.78x speedup for GPU-only execution with NVMe-resident

data compared to naive NVMe-GPU transfers and is highly

memory-efficient for hybrid CPU-GPU execution (Section 7).

Overall, HetCache turns the multi-memory-node nature of het-

erogeneous CPU-GPU-NVMe servers from a burden into a perfor-

mance booster for analytics.

2 SHORTCOMINGS OF CACHING POLICIES
Frequency-based caching. Existing caching policies aim to minimize

the number of disk accesses by maximizing the cache hit rate. The

most common caching heuristics such as LRU, MRU, and 2Q cache

pages based on the frequency and/or recency of use [17, 37, 5, 33,

24]. Such policies assume that processing throughput and input

access bandwidth are highly correlated and thus work well when

storage is a significant bottleneck. Historically this has been the

case due to the significant bandwidth difference between CPUmem-

ory and disk bandwidth: even if a query accessed a small number

of data pages from storage, the performance penalty was signifi-

cant. In contrast, recent improvements in interconnect and storage

technology significantly reduce the bandwidth gap: aggregating

NVMe drives into arrays can offer storage bandwidth comparable

to DRAM bandwidth. As a result, the benefit of caching a page de-

pends on its use: caching a page participating in a query that is slow

due to another operation will provide a small benefit compared to

caching a page for an input-IO bound query. Even if the pages are

accessed with the same frequency. Caching policies that treat
pages consumed by slow and fast queries as equal wastes
memory capacity on servers with high bandwidth storage.

The more-caching-the-better.Most past approaches treat all pages

of a (disk-resident objects
1
, access frequency)-combination as equal

and will try to cache as many pages as possible. However, as disk

bandwidth increases relative to query processing throughput, the

following scenario occurs: even for a column where caching is

beneficial, as more pages are cached, we cross a threshold where

input-IO bandwidth ceases to be the bottleneck and caching more

pages provides diminishing performance improvements. As a result,

HPCache [26] caches column proportions; for CPU-NVMe execu-

tion, HPCache finds a balance between capacity, optimal column

caching proportion, and expected query patterns. Still, HPCache

assumes a linear storage hierarchy and does not handle either mul-

tiple transfer paths or heterogeneous compute devices, which have

varying query processing performance, Caching benefits are no
longer linear to the size of the cache; the point of diminishing
returns for caching depends on both how much and where
data is cached.

Centralized caching for homogeneous architectures. The existing
centralized caching process assumes a uniform and centralized,

shared-everything architecture inside the server, with a single pro-

cessing unit type, the CPU. Yet, modern servers have multiple CPU

sockets and processing unit types (e.g., GPUs). As a result, such

architectures have multiple access paths, each with different band-

widths. Further, the multiple processing units invalidate the single

processing throughput assumption: GPUs process queries at differ-

ent (slower or faster, depending on the case) rates than the CPU.

Exacerbating this, hybrid CPU-GPU execution may also distrib-

ute data across the different devices for load-balancing purposes,

making the overall system throughput dynamic. Lastly, memory is

heterogeneous and distributed across multiple devices: GPU mem-

ory has a different access profile than CPU memory, and both are

distributed across multiple chip(let)s. As a result, caching data in

one memory node provides a potentially different benefit from

1
Columns or segments, depending on the specific system.
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caching it in another node, depending on the interconnect con-

gestion, the relative processing unit, query processing throughput,

and even the access granularity.Heterogeneity breaks unifor-
mity assumptions about the processing and caching layer of
adaptive caching mechanisms.

The simplifying alternative: no caching for analytics. Given the

multitude of challenges related to caching and the high-bandwidth

storage alternatives, past work has also suggested just excluding

analytical queries from caching [3]. These caching policies, while

potentially simplifying analytical query processing, rely on the

assumption that analytics are either unpredictable or very slow

already. Still, with warehouses and more data-demanding applica-

tions, analytical queries have become more popular. Further, with

the introduction of NUMA-aware, parallel and GPU-accelerated so-

lutions, analytics can reach response times of a few milliseconds for

hundred of GBs of inputs. As a result, some queries see significant

performance degradation due to waiting on out-of-memory data

fetches. High-performance analytics requires, at least some,
memory for caching.

3 A PITSTOP BEFORE THE DISK
Despite the availability of high bandwidth storage, not all data
should be stored on block storage devices. In this section, we argue

when and why it is still necessary to store input data in memory.

In the scope of this paper, we do not consider spilling intermediate

data, such as hash tables, to block storage.

3.1 CPU is not always slow
CPU workloads can still be bottlenecked by scans, even in memory.
Figure 2 shows the consumption throughput of a query that scans a

single column, applies a selective filter and performs a summation.

In order to apply the predicate, the query must read each value in

the column. The black line shows the query consumption through-

put when the data is on NVMe storage as the available storage

increases. The dashed blue line shows the consumption throughput

of the same query when the column is fully memory resident. The

query processing throughput of NVMe resident data scales linearly

with the available storage bandwidth until the storage bandwidth

exceeds half of the memory bandwidth (measured to be 126 GB/s).

This is because in addition to the CPU reading the data from mem-

ory, each NVMe transfer also consumes memory bandwidth in

order to write (stage) the data to memory
2
. In our test bed, the filter

reads from memory and not the CPU’s last level cache; thus, as the

storage bandwidth approaches half of the memory bandwidth, the

query becomes memory-bandwidth bound. In contrast, when the

data is fully memory resident, the query is the only thing reading or

writing to memory and can read the data at full memory bandwidth.

Query execution on NVMe-resident data can be bottlenecked
by memory bandwidth.

Example. Arrays of NVMe storage have a bandwidth greater

than the processing throughput of many queries when executed on

CPUs [26]. Figure 1a plots the execution time of two Star Schema

2
This is micro-architecture dependent. Intel Xeons feature DDIO, which transparently

enables IO devices to read/write directly from the CPU last-level caches bypassing

DRAM, in some cases reducing the memory bandwidth requirements of IO [1]. To the

best of our knowledge, AMD CPUs do not have an equivalent feature. Our testbed

(Section 7) uses an AMD EPYC CPU.

Benchmark (SSB) [27] queries when the fact table is on disk and the

storage bandwidth increases from 7 GB/s to 86 GB/s.
3
Both of these

queries construct in-memory hashtables and then access the fact

table sequentially to probe the join hashtable. The execution time of

the two queries on memory-resident data is shown in dashed lines.

Query 1.3 consumes input data at a relatively high input bandwidth

and executes faster as the available storage bandwidth increases.

In contrast, query 3.1 consumes data at a lower rate as the query

processing is more complex, involving multiple joins and grouping.

It only improves up to 14 GB/s because, beyond this, storage is not

the bottleneck in query execution. High bandwidth storage shifts

the bottleneck away from storage for coarse-grained accesses.

3.2 GPU acceleration
GPUs significantly accelerate analytical query processing.When data

is in local memory, GPUs execute queries up to 25x faster than

CPUs [35, 40, 14, 10]. This is due to both the higher bandwidth

memory available on GPUs, up to 2 TB/s on a current-generation

Nvidia A100 GPU, and the threading model, which enables GPU

execution to mitigate the cost of memory stalls. However, such per-

formance requires the data to be GPU resident prior to processing.

While GPU execution may still be beneficial for processing non-

GPU-resident data, it is predominantly bottlenecked by the data

transfer over the interconnect [32, 18, 7, 40]. Caching can alleviate

this bottleneck, but cache sizes are constrained by the compara-

tively small GPU memory capacity. Hence, GPU memory must be

used judiciously to cache data with the largest impact on query

execution times. GPU acceleration needs memory efficient
caching to mitigate data transfer bottlenecks.

Example. However, bandwidth to input data is still a bottleneck

for GPU-accelerated query execution. Arrays of NVMe drives can

have a bandwidth that far exceeds the relatively limited intercon-

nect bandwidth of a GPU. Figure 1b shows the execution time for the

same setup but when executing on a GPU. Both query 1.3 and query

3.1 improve as the storage bandwidth increases until 32 GB/s, which

is the maximum bandwidth of the PCIe 4.0 x16 connection that the

GPU is equipped with. The vertical dashed orange line shows the

PCIe 4.0 x16 bandwidth. Even with this bottleneck, queries such as

3.1 improve over CPU execution due to the GPU’s high memory

bandwidth and the high number of concurrent contexts. However,

queries such as 1.3 perform worse than on the CPU as the CPU can

scan the data faster since it can read data from the NVMe drives

at a greater bandwidth. Naive NVMe-GPU transfers do not fully

exploit the bandwidth of NVMe arrays.

4 HETEROGENEOUS MEMORY HIERARCHY
In-memory data caching provides significant acceleration for some

analytical workloads; however, it is also expensive as memory ca-

pacity comes at a significant cost [39]. In contrast, out-of-memory

storage 1) is significantly cheaper with a better price/performance

ratio [22], 2) continues to get cheaper relative to DRAM [13], but 3)

is also slower. However, fast and slow need to be considered relative

to the workload requirements. While storing data in memory can

improve query response times, not all workloads benefit equally

3
The storage bandwidth is controlled by varying the number of NVMe drives the data

is striped across.
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Figure 1: Execution time as the available storage bandwidth increases for two SSB queries at scale factor 1000. See Section 7 for the full
experimental setup.
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Figure 2: Scan throughput for scan-filter-aggregate query with vary-
ing storage bandwidth. See Section 7 for the full experimental setup.

from in-memory storage. Thus, treating all the input data equally

for in-memory caching may waste memory for little-to-no benefit.

Conversely, out-of-memory processing can significantly slow down

some workloads. Further, with the proliferation of accelerators, the

performance benefit of storing data in memory depends on both

the compute device consuming it as well as the difference in band-

width between memory and out-of-memory storage. Efficient use

of memory demands a workload-aware approach.

Traditionally, storage systems follow a linear hierarchy. Data

is loaded into faster mediums before being processed; the CPU

loads data from NVMe to DRAM, and then the CPU loads the data

from memory to its caches and, ultimately, registers for processing.

However, heterogeneous servers do not maintain a linear hierarchy.

Data can be copied between CPU and GPU memory at cache-line or

greater granularity, and GPUs can also directly access CPUmemory

at fine granularity [8]. Both CPUs and GPUs can directly transfer

data from NVMe drives to their local memory. Further, data can be

transferred from point to point via multiple intermediate transfers.

For example, data can flow from NVMe storage to GPU memory

through CPU memory.

The diversity in available access paths and the non-uniform

query processing throughputs challenges the caching design of

DBMS. Caching policies must determine both when and where
to cache. Individually, each compute device achieves maximum

query processing throughput when consuming data from local

memory. For hybrid CPU-GPU execution, the ideal data placement

across devices is proportional to their query processing throughput.

However, there is a capacity constraint, which is non-uniform across

devices; CPU memory is much larger than GPU memory, yet GPUs

typically have greater query processing throughput. Thus, once the

GPU cache is full, GPU query execution depends on efficient data

transfers. This data can be transferred from CPU memory or NVMe

storage, and both can saturate the interconnect. The key difference

between the two options is the access granularity. GPUs can directly
access CPU memory at fine granularity but can only access NVMe

storage at the block level. Because many queries selectively access

columns, e.g., due to joins or filters, CPU-memory caching for GPU

consumption can enable faster query response times due to the

reduction in IO-amplification compared to transferring full pages.

Figure 3 demonstrates the impact on the performance of pushing

whole pages to the GPU compared to accessing values directly in

CPU memory as the selectivity varies. For this micro-benchmark,

the input data is a table of two columns of uniformly distributed

integers. Each column is 100 GB. The query filters tuples using the

first column and then sums the values from the second column for

tuples that pass the filter using late materialization. The filter is used

to control the selectivity. For GPU execution, directly accessing

values in CPU memory is advantageous for selectivities below 10%

compared to transferring all the data using 2MiB pages. However,

for higher selectivities, it is more performant to push the data via

2MiB pages.

CPU memory can serve as a cache for pages selectively accessed

by GPU execution: the selectivity reduces the amount of data trans-

ferred over the interconnect during late materialization for CPU-

resident data. Using CPU memory to cache data for the GPU is

viable because, for many queries, CPU execution is slower than stor-

age bandwidth and therefore does not require a large cache to max-

imize the CPU’s own processing throughput. However, CPU mem-

ory to GPU transfers also consumes CPU memory bandwidth. This

may cause interference in CPU execution for bandwidth-intensive
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Figure 3: Execution time for a scan-filter-aggregate query as the se-
lectivity of the filter is varied. See Section 7 for the full experimental
setup.

queries. Caching in a heterogenous memory hierarchy is a trade-off

between access granularity, capacity, and bandwidths. Effective

caching policies must consider all three properties to meet the

bandwidth demands of the workload.

5 HETCACHE: WORKLOAD AND HARDWARE
AWARE STORAGE

We envision HetCache, a storage engine that efficiently utilizes the

memory and storage resources of NVMe-CPU-GPU servers to ac-

celerate query execution on larger-than-memory data. HetCache is

workload-aware in order to determine when to cache data, utilizing

memory to only cache columns that will accelerate query response

times. Further, HetCache holistically considers the query through-

put of CPUs and GPUs as well as the per-query per-column access

selectivity to determine where to cache data and which transfer

path to use.

5.1 Staged SemiLazy Transfers
GPU query throughput for non-GPU resident data is primarily

bottlenecked by the interconnect. Both memory and storage band-

widths exceed the GPU-system interconnect bandwidth, and in

most cases, the processing throughput of GPU query execution

also exceeds the interconnect bandwidth. Input data can either

be eagerly (pushed) or lazily transferred (pulled) to GPUs. Eager

transfers push full pages of data over the interconnect into GPU

memory before the GPU begins processing those pages, overlap-

ping processing and data transfers as through HetExchange [6].

Eager transfers result in a sequential access pattern, enabling full

utilization of the interconnect bandwidth. GPU query execution

on GPU resident data benefits from both the high bandwidth and

low latency of GPU memory data accesses. However, not all values

pushed across the interconnect may be accessed by the query. For

example, values from columns that are accessed after a series of

selective conditions, such as joins and filters, have a lower probabil-

ity of being accessed by the query. Modern GPUs can use a unified

virtual memory address space with CPU memory, enabling GPUs

to directly access CPU memory at a fine granularity but at higher

latency than accessing GPU-local memory [8]. Lazy transfers are

beneficial when few values are required per page, as less data needs

to be transferred across the interconnect. SemiLazy transfers [32]

eagerly transfer pages for columns that need to be nearly entirely

accessed and lazily transfer values from pages that are selectively

accessed.

HetCache mitigates the interconnect bottleneck through Staged
SemiLazy Transfers. Lazy transfers require the accessed data to

be in CPU memory. Based on per-column query selectivity hints,

HetCache handles GPU page requests for NVMe-resident data by

either eagerly moving the page fromNVMe storage to GPUmemory

or staging the page in CPU memory through an NVMe to CPU

memory transfer. The GPU can then lazily fetch values in the page at

a finer granularity resulting in more efficient utilization of the GPU

interconnect. Staged SemiLazy transfers result in better storage

bandwidth utilization, as the full storage bandwidth is available for

NVMe to CPU memory transfers, while NVMe to GPU transfers is

limited by the GPU interconnect.

5.2 Heterogeneity-aware Caching
HetCache implements a heterogeneity-aware caching policy. It

uses both workload information, query processing throughput, and

selectivity hints, as well as hardware information, interconnect

storage, and memory bandwidths, to determine how much and

where to cache.

To determine how much to cache on each device for device-

local access, HetCache observes the per-device query processing

throughput. The rate of page requests that a query makes from each

device is used to infer the query’s per-device processing throughput.

With the per-device processing throughput, the known intercon-

nect, storage, and memory bandwidths, HetCache determines the

maximum amount of each column to be cached on each device

without caching any column beyond the point of diminishing re-

turns. i.e., it aims to match the effective bandwidth to query inputs,

which can be partially in memory and partially in storage, to the

query processing throughput.

HetCache also uses CPUmemory to cache data for GPU accesses.

As CPU memory capacity is large compared to query processing

throughput, CPUs typically experience less memory pressure than

GPUs which have higher query processing throughputs and con-

strained memory capacities. Staged SemiLazy caching can move the

bottleneck from the interconnect back to storage for queries that se-

lectively access columns. Hence, for these queries, it is necessary to

cache pages from selectively accessed columns in the higher band-

width CPUmemory to utilize the GPU interconnect fully. HetCache

uses both the per-device query throughput and the selectivity hints

to determine if GPU query processing is interconnect-bandwidth-

bound or storage bandwidth-bound. In both cases, it will cache

pages in GPU memory until limited by GPU memory capacity.

Once constrained by the GPU memory capacity, HetCache will

preferentially cache densely accessed pages in GPU memory and

cache sparsely accessed pages for storage-bandwidth bound queries

in CPU memory, optimizing for overall GPU query processing

throughput whether queries are bottlenecked by the interconnect

bandwidth or by storage bandwidth.

6 SYSTEM
We use Proteus as our analytical engine [6, 32]. Proteus is an in-

memory execution engine with support for parallel query execution
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across mixes of CPUs and GPUs. Query pipelines are parallelized

by instantiating a pipeline instance per compute unit (CPU core

or GPU). A logical scan operator emits page handles that are then

routed to query pipeline instances. The routing policies are plug-

gable, defaulting to a prefer-local routing policy. The prefer-local

routing policy routes page handles (in rowsets) to pipeline instances

running on a compute unit local to the memory referenced by the

corresponding rowset, with a fallback option of using a non-local

compute unit if the local one is busy. When data transfers are eager,

before touching the tuples inside a page, a mem-move operator [6]

transfers the page to the consumption site if it’s not already there.

Memory transfers are scheduled asynchronously to compute tasks

to overlap data transfers and intra-device execution.

Integrating HetCache into Proteus required handling the late

binding of input pages to memory. Specifically, before HetCache,

Proteus, as an in-memory engine, expected the data to already

be populated in memory and a page handle to refer to a single

actual data page – with only the exception of snapshot-related

copies [32]. Any copies of the input data, e.g., due to a transfer

from one device to another, were transient and only existed for the

required subset of the query lifetime, i.e. until they were consumed

and the memory reclaimed for another data transfer. Further, when

the mem-move operator received a page handle, it would check its

current placement. If the current location was acceptable (i.e., for

an eager transfer if it was already in the destination node, or for a

lazy transfer if it was accessible by the target node), and if not, it

would move it to the appropriate node.

In contrast, HetCache, similar to traditional storage engines,

can result in two or more copies of a data page: one in storage

(NVMe) and potentially one or more copies in the block manager

(in-memory cached page, potentially replicated across CPU/GPU

memory). Having multiple (immutable) copies of the same page

provides additional freedom for memory transfers but also chal-

lenges. We implement a routing policy that consults HetCache on

the locations of the pages in a rowset. Rowsets are routed based on

the locations of the first column in the rowset since it is the most

likely to be cached in GPU memory, as Proteus will access all the

values from the first column. Recall that caching for CPU requests

does not consider the selectivity; thus, there is no bias towards

caching the first column in CPU memory. If the page is in both CPU

and GPU memory, the rowset is routed to a GPU pipeline instance

to leverage the GPU’s greater processing speed on cached data. We

updated the mem-move to consult with HetCache on three things:

1) the location of copies of the corresponding page, 2) whether

the transferred page would be cached in its target node for subse-

quent queries, and 3) if yes, whether the transferred page should be

cached for selective access or not. HetCache’s answers to (2) and

(3) are treated as hints, and the mem-move is allowed to ignore

them. Based on the three answers, the mem-move decides whether

a transfer is necessary or if an existing in-memory copy of the page

is suitable. If a transfer is necessary, it selects a target memory node,

schedules the transfer, and on its completion, it registers the new

page location with HetCache along with the ID of the query mak-

ing the request and a selectivity hint passed down from the query

plan. The query ID is used by HetCache to infer the query’s pro-

cessing throughput. Then, HetCache can decide whether it wants

to keep the resulting page as part of the cache. To maintain the

page in the cache, we use reference counting: each data page is

accompanied by a reference count for the flow-based execution; we

extend that and keep one extra reference in HetCache to prevent

the page from being evicted/released when it is consumed. To evict

a page, HetCache releases its reference, though this may not imme-

diately free the page’s memory as query pipelines may still hold

temporary references. At the moment that the mem-move decides

to do a data transfer, it has derived a source and a target location;

still, there are a set of different actions required to implement the

transfers. Specifically, the mem-move inspects the source and target

location and invokes the block or the storage manager to do the

actual data transfers, depending on whether it’s a memory-only or

NVMe-involved data transfer.

7 EVALUATION
This section includes the results of our experimental evaluation.

First, we describe the hardware, some specifics of the transfers,

and the benchmark used in our experiments. Then we present the

results for GPU execution for varying access paths and initial data

locations, demonstrating the performance benefit of indirect NVMe-

GPU transfers. Finally, we evaluate the data placement of HetCache

for hybrid CPU-GPU execution and show the memory-efficiency

benefits of workload and hardware aware caching.

7.1 Experimental setup
Hardware. All experiments were conducted on a server with a

2x24-core AMD EPYC 7413 processor, having two threads per core,

totalling 96 threads and 256 GB of DRAM. Each CPU socket is

connected with a single Nvidia A40 GPU with 48 GB memory using

16 PCIe 4.0 lanes and 12 Corsair MP600 Pro NVMe drives, each

using 4 PCIe 4.0 lanes. We observe a maximum memory bandwidth

of 116 GB/s per socket on the STREAM triad benchmark [23], and

86 GB/s sequential read bandwidth from all 12 NVMe when using

fio [2]. All experiments were conducted on a single socket and

utilized all 12 NVMe drives unless otherwise stated.

Software. CPU-GPU memory page transfers use CUDA’s mem-

copy mechanism, while the NVMe-involved transfers branch based

on whether the target is CPU or GPU memory: For NVMe to CPU-

memory IO, we use io_uring [9], and for direct NVMe to GPU IO,

we use Nvidia’s GPU-Direct storage API [11]. All page-level trans-

fers use 2 MiB as the IO transfer size to align with the 2 MiB huge

pages used by Proteus. Lazy sub-page data accesses happen as DMA

requests, and we enforce the accessed page to be present in CPU

memory to be globally accessible.

Benchmark.We evaluate our methods using the Star Schema

Benchmark (SSB) [27] with a scale factor (SF) of 1000. SSB has four

query groups, and within each query group, the query’s selectivity

decreases with the rank; for example, Q1.3 is more selective than

Q1.2, which is more selective than Q1.1. We store the data in binary

columnar format, resulting in Query groups 1-3 having a working

set of 96 GB per query and group 4 having a working set of 144 GB.

7.2 Staged SemiLazy transfers
Figure 4 analyzes the performance of SemiLazy transfers frommem-

ory and staged SemiLazy transfers from NVMe compared to eager

transfers under GPU-only execution. The experiment executes SSB
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Figure 4: Comparison of transfer paths for GPU-only execution with
CPU-memory resident data (blue) and NVMe resident data (yellow)

Q3.1 and Q3.4 at SF1000; the queries have selectivities of 3.4% and

0.000076%, respectively. In both cases, whether the data is read from

CPU memory or NVMe directly, eager transfers are bottlenecked

by the GPU interconnect for both queries; this is because, regard-

less of query selectivity, the entire query’s working set (96 GB)

is transferred to GPU, although the transfers are overlapped with

processing. Although SemiLazy transfers less data over the inter-

connect, it does so at the cost of higher memory latency from CPU

memory. The benefit of SemiLazy transfers is more apparent in

Q3.4 compared to Q3.1 because Q3.4 is more selective, and thus, less

data is transferred over the interconnect for the selectively accessed

columns. However, in the case of Staged SemiLazy transfers, the

lower selectivity causes the query bottleneck to shift from the in-

terconnect to the NVMe transfers. Although less data is transferred

across the interconnect, the selectively accessed columns must still

be loaded from the NVMe drives into CPU-memory.

In summary, SemiLazy and staged SemiLazy transfers enable

GPUs to access data at a finer granularity (directly accessing values

in CPU memory compared to disk blocks) and thereby reduce data

transferred over the interconnect in the case of selective accesses,

and for very selective accesses, shifts the bottleneck from GPU

interconnect to storage. Staged SemiLazy transfers enable theDBMS

to optimize transfer granularity, capacity, and limited interconnect

bandwidth.

7.3 Workload-aware caching
Figure 5 plots the execution time of SSB Q1.3 and Q3.1 at scale factor

1000, executed on both, CPU and GPU (HetExchange [6]), with

(staged) SemiLazy transfers. We set the CPU and GPU maximum

cache sizes to 90 GB and 10 GB, respectively. We plot the execution

times when the data is completely NVMe resident, completely CPU

memory resident, and with warm HetCache-managed caches. Q1.3

is bandwidth-intensive and thus benefits from data being inmemory.

In comparison, Q3.1 ismore compute-intensive and only suffers a 5%

penalty when accessing data directly from NVMe. Q1.3 requires

75 GB of CPU cache, in addition to 10 GB of GPU cache, to approach

fully CPU-memory resident performance, while Q3.1 requires only

the full 10 GB of GPU-memory cache and no CPU-memory. This

is due to the fact that query pipelines being executed on GPU are

bottlenecked by the interconnect bandwidth, while for Q1.3 the
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Figure 5: Query processing on CPU-GPU with CPU-resident, NVMe-
resident, and HetCache’d data

CPU query processing performance is the same whether the data

is initially NVMe-resident or CPU-memory resident.

Figure 6 analyzes the effect of CPU cache size on Q1.3 by plotting

execution time with varying cache sizes in CPU memory while

having a fixed 10 GB GPU cache. Recall that Q1.3 is bandwidth-

intensive and hence fully uses a 10 GB GPU cache and requires up

to 80% of data in CPU memory before there are diminishing returns

on caching any more input data.

Impact-oriented caching through proportional caching allows

HetCache to tune the amount of cached data to best effort to satisfy

the query’s consumption bandwidth requirements but not beyond

the point of diminishing returns. Q3.1 represents the class of queries

that do not require caching data in CPU memory given that the

available storage bandwidth is higher than the query’s bandwidth

requirement for CPU execution, and thus, saves CPU memory for

caching other data, which may have a higher impact on the overall

performance of the analytical engine. While Q1.3 is representative

of class queries that are bandwidth-intensive and benefit more from

caching in faster memory; in this case, the query’s execution time

improves until 80% of input data is cached. Further, workload aware-

ness allows the HetCache to select appropriate transfer methods

across devices, overcoming the common bandwidth wall for acceler-

ated query processing. Queries with lower selectivities benefit from

staging data in CPU-memory, getting the best of both worlds; high-

bandwidth loading from NVMe to CPU-memory while efficiently

using CPU-GPU interconnect via granular accesses. In summary,

HetCache introduces workload-aware and impact-oriented caching

and efficiently utilizes the storage tiers for maximum performance.

8 RELATEDWORK
Buffermanagers optimized for nearly in-memory processing.
Recent work has minimized the overheads of buffer managers when

processing in-memory data. This enables in-memory performance

when the working set fits in memory but also graceful performance

degradation when the working set exceeds memory capacity. Pro-

viding persistency and support for out-of-memory data traditionally

introduces two overheads with respect to the buffer pool. First, hav-

ing a centralized buffer pool creates a point of contention [16].

Second, persistence requires a level of indirection when translating

in-memory references to out-of-memory object references. Graefe
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Figure 6: Execution time of SSB Q1.3 at SF1000 with a fixed 10 GB
GPU cache and varying size CPU memory cache.

et al. [12] use pointer swizzling to eliminate buffer pool overheads

when all data fits in memory. By avoiding a hashtable, they avoid

a costly central point of contention. LeanStore [19] extends on

pointer swizzling by speculatively unswizzling pages, keeping hot

pages in memory without explicitly tracking page accesses in a

shared data structure. Umbra [25] extends LeanStore with support

for variable-length buffer frames, improving the handling of large

objects. Optimizing buffer pool accesses reduces the overhead im-

posed on mostly-in-memory analytics while adding support for

out-of-memory data. Unlike HetCache, these approaches strive

to keep the working set in memory, regardless of the bandwidth

required by the workload. These methods are complementary to

HetCache, which improves the cache efficiency with respect to the

performance gains achieved by caching data in memory but does

not attempt to improve upon the buffer manager overhead.

GPU data transfers. HetCache is not the first system designed

to overcome the GPU interconnect bottleneck. To alleviate the inter-

connect bottleneck for highly selective queries, Yuan et al. studied

the effects of different CPU-GPU transfer optimizations on GPU

query performance, including compression, invisible joins, and

transfer overlapping [40]. Raza et al. introduce SemiLazy transfers

to GPU for system memory resident data [32]. HippogriffDB [20]

uses workload-aware adaptive compression to maximise the effec-

tive bandwidth of data transfers to GPUs and also introduces direct

NVMe-GPU transfers bypassing CPU memory. Data is stored in

memory or on disk in a compressed format and is decompressed by

the GPU just before it is consumed by query execution. BaM [31]

introduces a technique to enable GPU orchestration of IO requests,

bypassing the CPU for both orchestration and data transfers. This

enables GPUs to access NVMe resident data with disk-block-sized

data-dependent access patterns performantly.

Integrating GPUs into the storage hierarchy. Most GPU-

accelerated database systems either operate only on GPU-resident

data or transfer data from system-memory toGPU-memory at query

execution time [29, 34]. GPU memory can either be treated as a

peer to CPU memory or as a higher level of the storage hierarchy.

Systems such as AresDB [36] and HeavyDB [38, 28] take the latter

approach, using CPU memory as a staging area for all transfers

to GPU memory. HippogriffDB treats GPU memory as a peer to

CPU memory. It streams input data from both CPU memory and

NVMe storage to the GPU for query processing [20]. PG-Strom [30]

can load data directly from NVMe to a GPU as well as from CPU

memory. While it implements a GPU cache, it does so at the table

level of granularity, limiting its utility to tables smaller than GPU

memory.

9 CONCLUSION
This paper shows how modern hardware (NVMe and GPU acceler-

ation) affects analytical engines and demonstrates that data place-

ment at each layer in the heterogenous memory hierarchy is a

trade-off between: 1) Bandwidth: Each memory tier can access data

at different bandwidths. The maximum bandwidth tier is not nec-

essarily optimal. It can use capacity without performance gain at

the expense of other queries, which could benefit from increased

bandwidth. 2) Capacity: Data stored in device-local memory results

in the highest performance. However, with the constrained capacity

of each device, not all data can be stored in local memory. Heteroge-

nous processing throughput and capacity means high-throughput

capacity-limited devices can cache in other devices’ memory. 3) Ac-
cess granularity: Even if two access paths offer the same bandwidth,

the access granularity can limit the effective bandwidth due to IO

amplification. Indirect transfers from block-level devices via an

additional cache-line addressable device can mitigate the cost of IO

amplification due to non-uniform access to storage bandwidth.

We propose HetCache, a storage engine design for analytical

workloads. HetCache encapsulates heterogeneity through impact-

oriented proportional caching and access-path-aware data place-

ment. Our prototype implementation of HetCache achieves up to

1.78x speedup of GPU-only execution on NVMe resident data, and

HetCache-managed caches can achieve in-CPU-memory perfor-

mance with hybrid CPU-GPU execution without storing all data in

memory.
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