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ABSTRACT

Analytical engines rely on in-memory caching to avoid disk accesses
and provide timely responses by keeping the most frequently ac-
cessed data in memory. Purely frequency- & time-based caching
decisions, however, are a proxy of the expected query execution
speedup only when disk accesses are significantly slower than in-
memory query processing. On the other hand, fast storage offers
loading times that approach or even outperform fully in-memory
query execution response times, rendering purely frequency-based
statistics incapable of capturing impact of a caching decision on
query execution. For example, caching the input of a frequent query
that spends most of its time processing joins is less beneficial than
caching a page for a slightly less frequent but scan-heavy query.
As a result, existing caching policies waste valuable memory space
to cache input data that offer little-to-no acceleration for analytics.

This paper proposes HPCache, a buffer management policy that
enables fast analytics on high-bandwidth storage by efficiently us-
ing the available in-memory space. HPCache caches data based
on their speedup potential instead of relying on frequency-based
statistics. We show that, with fast storage, the benefit of in-memory
caching varies significantly across queries; therefore, we quantify
the efficiency of caching decisions and formulate an optimization
problem. We implement HPCache in Proteus and show that i) esti-
mating speedup potential improves memory space utilization, and
ii) simple runtime statistics suffice to infer speedup expectations.
We show that HPCache achieves up to 12% faster query execu-
tion over state-of-the-art caching policies, or 75% less in-memory
cache footprint without deteriorating query performance. Overall,
HPCache enables efficient use of the in-memory space for input
caching in the presence of fast storage, without any requirement
for workload predictions.
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1 INTRODUCTION

Improvements in CPU and DRAM efficiency allow in-memory
query processing in analytical engines, placing frequently accessed
datasets in-memory [37] and avoiding slow disk accesses. However,
CPU and DRAM improvement rates have slowed in recent years,
while advances in flash storage have enabled increased persistent-
storage bandwidth [16, 23, 24, 32]. As a result, storing the working
set in memory is no longer always advantageous. For example,
when a query is CPU or memory latency bound it has lower through-
put than storage bandwidth, so storing the query’s entire input in
memory is wasteful because it is possible to achieve the same ex-
ecution time with the input located on disk. Instead, it would be
more beneficial to use the same memory for another query.

For decades, database designs were based on the assumption
that disk IO is the bottleneck in execution times and relied on in-
memory caching, in the buffer pool, to bypass it. There are two
lines of work that improve buffer pool performance for analytics:
i) improving the efficiency of accessing buffer pool pages [22, 26],
and ii) improving the probability that frequently used pages remain
in memory [9, 10, 20, 27, 30, 31, 34]. In the first line of work, fast
access to the buffer pool accelerates storage [2, 22, 26] and reduces
the buffer pool overhead but relies on the effectiveness of the buffer
pool policy to accelerate query execution. In the second line of work,
frequency-based eviction policies improve the cache hit rate. High-
bandwidth storage, like multiple NVMes per machine, however,
allows for data loading times that are competitive to in-memory
query processing (Figure 2). Thus, improving the hit rate no longer
implies faster analytics, and as a result, the available in-memory
space is underutilized, slowing down query execution.

In this paper, we propose HPCache, an eviction policy and tuning
agent that optimizes the caching efficiency of the buffer pool for
analytical workloads on high-bandwidth storage. We show that i)
caching pages that have the same access frequency can yield signif-
icantly variable query acceleration results, and ii) efficient cache
use should aim for partial column caching to avoid diminishing re-
turns. HPCache is a buffer management policy that considers both
the query frequency and the acceleration impact of any caching
decision to derive a memory-efficient caching decision. Towards
that end, HPCache i) examines the query execution to understand
caching benefits, and ii) automatically tunes the caching priority
and in-memory per-column space budget based on past execution
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Figure 1: Conceptual slowdown for offloading sequential ac-
cesses to a 10x (blue) or a 100x (green) slower medium, over
not offloading. The color shadow shows the penalty of a in-
memory random access over a sequential access: 1x for the
lighter, 16x for the darker one.

behavior. Overall, HPCache improves the efficiency of in-memory
data caching for analytics, allowing faster query execution for a
given memory budget.

In summary, HPCache makes the following contributions:

e We show that in the presence of high bandwidth storage,
frequency-based in-memory caching policies cache inputs
that provide little query acceleration (Section 2).

e We propose HPCache, a policy that enables efficient memory
utilization by considering the expected query acceleration of
different caching decisions (Section 3). To avoid unreliable
predictions, HPCache continuously tunes the caching policy
based on run-time statistics (Section 4).

e When compared to state-of-the-art eviction policies, HP-
Cache’s improved caching efficiency allows for up to 12%
speedup with the same memory budget, and up to 75% mem-
ory footprint reduction (Section 5).

Overall, HPCache enables analytical query processing to effi-
ciently use the available in-memory space when accessing larger-
than-memory datasets. Thus, it allows faster analytical response
times for the same memory budget, or decreased memory footprint
without execution time degradation.

2 IN-MEMORY CACHING AND
HIGH-BANDWIDTH DISKS

Directly attached NVMe arrays have enough bandwidth to inval-
idate the general rule-of-thumb that scanning persistent data is
always slower than in-memory execution. The rest of this section
shows how high read bandwidth affects the execution speedups
achieved by in-memory caching and how frequency-based caching
policies can result in ineffective eviction decisions. Finally, we quan-
tify the relative value of caching different data.

Fast storage. While disks were once considered slow, recent
advances in flash technology have resulted in servers having com-
parable disk read bandwidth and in-memory bandwidth. Recent
NVMes can sustain GBps of read bandwidth, e.g., an Intel D7-P5600
achieves 7 GBps. Furthermore, CPUs’ support for 100s of PCle 4.0
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Figure 2: Run time for a varying number of NVMe drives.

lanes per socket [13] allows multiple NVMes on the same server
to achieve 10s-100s GBps of aggregated read bandwidth - just a
single order of magnitude lower than the CPU memory bandwidth.
Quantifying “fast”. Still, an order of magnitude more band-
width is significant. Thus, analytical engines rely on CPU memory
for a wide range of operations: except for higher read bandwidth,
CPU memory also provides better random IO performance and
lower latency than NVMe arrays. As a result, CPU memory has
been a crucial element in enabling efficient in-memory joins [3, 4, 6]
and analytics in general [7]. Thus, for many queries, reading the
input data is only a small portion of the memory operations and
only dominant for scan-heavy and few-small-join queries [33].
Offloading random or latency-sensitive accesses to disk incurs a
significant overhead. However, offloading sequential data accesses
can have a minimal impact on response times: random and latency-
sensitive accesses cost more than sequential ones; thus, they quickly
dominate the query execution time. As such, when query complex-
ity increases, e.g., due to additional random accesses, the high
overhead of random & latency-sensitive operations boosts their
impact on query execution time, reducing the impact of sequential
accesses. The shrinking of the relative contribution of sequential
accesses to the total execution time as query complexity increases,
combined with the high disk bandwidth, allows for pushing sequen-
tial scans to the disk for a minor penalty — a reverse application of
Amdahl’s law. Instead, the analytical engine can use the saved space
for simpler or more selective, sequentially-scan-heavy queries.
However, the sensitivity of deciding which sequential scans to
offload to disk is a function of the disk read bandwidth: for high
read bandwidth, the slowdown varies significantly with relative
costs. As an example, Figure 1 shows the expected overall slowdown
when pushing a sequential read to two different storage media. For
a given ratio of random/sequential accesses (x-axis), the slowdown
for the fast (blue) medium varies significantly: from near 1 (no
slowdown) to half an order of magnitude for the majority of the
plotted range. In contrast, the slowdown observed for the slower
(green) medium is already significantly higher for the same range.
Thus, given an acceptable-slowdown threshold, the faster medium
allows simpler queries to run with offloaded data compared to the
slower medium. Overall, the observed slowdowns for on-disk exe-
cution become increasingly sensitive to query complexity.
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Figure 3: Execution time for three different data placements.

In-memory analytics vs. data loading: a race. Contrary to
common belief, avoiding disk accesses no longer significantly re-
duces analytical query response time. In some cases, in-memory
query processing can even be slower than loading input data from
storage. Similar to the aforementioned sequential vs. non-sequential
case, the slowdown due to accessing on-disk data depends on the
query. Figure 2 shows the in-memory execution time for two Star
Schema Benchmark (SSB) (Q1.3 and Q3.1) queries, the execution
time for the same queries when the data are loaded from storage,
and the time to load 96GB of binary data in memory from a variable
number of NVMes. Both queries access 96 GB of input data, but Q1.3
has one cache-resident join while Q3.1 has four higher cardinality
joins. With the input partitioned across four NVMes, Q1.3 and Q3.1
are 1% and 2x slower than scanning the data. Furthermore, Q1.3
sees a 4.8x slowdown when the input is not in memory. Caching
Q3.1’s input data has minimal speedup potential: the query, either
way, spends most of its time processing the joins. Overall, whether
in-memory caching of the input data will reduce query response
time or not is query-dependant, even for simple queries.

Memory efficiency of caching. While avoiding disk accesses
does not harm single-query execution, it leads to inefficient mem-
ory use when considering multiple queries. With data loading times
comparable to execution times for some queries, caching input data
for a query that spends most of its time on non-input operations can
result in wasting memory that could be used to accelerate another
query. Further, it contradicts the prior wisdom of caching the most
frequently accessed data. The most common caching heuristics
for analytics involve prioritizing data that has not been used for a
long time (LRU [36]), that was recently consumed (MRU [10]), or a
combination thereof and second-chance approaches [20]. However,
even if Q3.1 of the previous example were executed significantly
more frequently than Q1.3, caching its input would provide little
benefit: caching reduces disk 10, but as shown above, Q3.1’s execu-
tion time will improve very little. In contrast, caching the inputs of
Q1.3 will accelerate each execution of Q1.3. Thus, treating all IO
savings equally results in suboptimal query response times.

DaMoN’22, June 13, 2022, Philadelphia, PA, USA

20

@ 15
)
£
'_

c 10
K]
5
5]

] 5
L

0

0 10 20 30 40 50 60 70 80 920 100

Percent of input data in memory

Figure 4: Execution time for Q2.1 with increasing propor-
tions of input data cached in memory (one NVMe)

3 HPCACHE: HYBRID PROPORTIONAL
CACHING

Based on the above observations, we propose Hybrid Proportional
Caching (HPCache), a new data placement strategy that makes
caching decisions based on the expected query response time reduc-
tions. Rather than aiming to reduce disk accesses, HPCache builds
on three key principles to efficiently use the in-memory space: i) not
all inputs provide the same query acceleration, ii) pages should be
prioritized based on the expected impact on query execution time,
iii) optimal caching decisions should aim for the sweet spot of
matching query execution times with loading the remaining data.
The rest of this section outlines the above key principles and their
effect on in-memory caching decisions.

Not All Bytes Are the Same. Some queries are more sensitive
to the location of their input data than others. Multiple factors
affect the query response time, including the query access patterns,
the data placement of both intermediate and input data, and the
ability of the execution strategy to effectively use the available
hardware resources, e.g., through prefetching, vectorization, and
cache-awareness. Considering the query execution time, we can
roughly classify queries into two extreme categories: input-access-
sensitive queries whose execution time is highly determined by the
bandwidth available to access input data, and processing-sensitive
queries that spend most of their time accessing intermediate struc-
tures like join hash tables. As a result, Caching different inputs
in memory provides different response time gains. Thus, we use
the expected benefit (Section 4.1) when deciding between alternative
caching decisions to use the in-memory space efficiently.

Impact- & Frequency-based caching. Each query’s caching
efficiency depends on its input-access-sensitivity: a highly input-
access sensitive query will observe a higher (relative) speedup than
a processing-sensitive query when its inputs are cached in memory.

Figure 3 shows the execution time for three analytical queries
when using three data placement methods: fully in-memory, fully
on-disk, and a hybrid configuration with half the input data in-
memory and half on-disk. Both Q1.3 and Q2.2 are input-access-
sensitive queries, and thus, their execution time is halved when
moving half of their inputs in memory. However, when moving to
fully in-memory, the two queries have different execution times,
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despite their equal input size due to their differences in query
processing. Q3.1 is a processing-sensitive query, so it executes in
nearly the same amount of time regardless of the location of its
inputs. Equally allocating memory to cache the inputs of these
three queries would result in a slower speed up than preferentially
caching the inputs of the input-access-sensitive queries.

However, per-query caching efficiency is not the only metric
that matters when selecting which query inputs to cache: query
frequency can also boost or reduce the overall efficiency. In a given
workload, if the same or similar queries appear many times, then
there is a multiplicative benefit to accelerating the repetitive query
by caching its inputs.

To optimize the caching efficiency, HPCache combines the tradi-
tional frequency-based approaches with impact-based query accel-
eration expectations to achieve the best of both worlds. Specifically,
it weights queries and input columns based on their occurrence fre-
quency but calculates the overall expected execution time instead
of purely optimizing the number of disk accesses. We model query
execution as a flow (Section 4.2) to approximate how different data
placements would affect the total execution time for a sequence of
queries and select the best placement given a memory budget.

Partial input caching. Caching entire columns is wasteful:
even in the simplified case of a single query, caching more than
a specific fraction of a column provides minimal additional query
speedup. Figure 4 shows how the execution time of SSB SF1000
Q2.1 improves as we increase the percentage of in-memory input
data while the rest reside on an NVMe. Initially, the execution is
dominated by the data loading time and thus improves linearly as
more data are found in the in-memory cache. However, despite
using more memory, the query execution time sees almost no re-
duction after a specific point. From that point up to having fully
in-memory inputs, query execution is dominated by the actual
processing. Thus, additional caching has no benefit: it would be
preferable to use it for another query. HPCache limits the number of
pages that are cached for each column to avoid diminishing returns
from caching unnecessarily high portions of a specific column. The
limit is determined in a per-column base, and it’s proportional to the
expected impact of caching the corresponding column (Section 4.3).

4 TUNING & MONITORING

To materialize HPCache, we provide a model that captures per-input
caching impact (Section 4.1) and use it to provide a memory-efficient
caching configuration (Section 4.2). Finally, we show how HPCache
continuously adapts its caching configuration based on updated
estimates and caching configurations (Section 4.3).

4.1 Impact modeling

We model the impact following a two step procedure: i) model the
impact of caching the inputs of a specific query, and ii) combine
impacts from multiple queries to determine the overall impact for
caching a column.

The benefit of caching a query input. To model the impact
of caching a specific query input, we model the execution time for
the pipeline [25] consuming the corresponding input: by definition,
caching the input will only change the performance of that pipeline.
Any other pipeline that joins with the current one will use a newly
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materialized data structure produced by the modeled one. Further,
the pipeline operates like a pipe as it consumes its input at a specific
rate. This rate is limited either by input access bandwidth, or the
pipeline’s maximum throughput. Thus, if we have the size of the
pipelines inputs (B), the storage bandwidth (S,,), the memory
bandwidth (Mp,, ), the proportion of inputs in memory (x), as well as
the pipelines maximum throughput (P, ), then we can approximate
the execution time for partially cached inputs as
(1-x)*xB x*B B

Shw ’ Mpay P bw
This results in a line similar to Figure 4 as the proportion of inputs
in memory (x'), varies from 0% to 100%. The query’s execution
time is initially bottle necked by storage IO (the left side of the
max) until the query execution time reaches in-memory processing
speeds (where all terms of the max are equal). At this point, caching
any additional inputs in memory does not improve the execution
time (the right side of the max). We calculate Py, using knowledge
from previous query executions and show in Section 4.3 how we
relax this requirement. To calculate the reduction of execution time
from one input caching rate (x%) versus another (y%), it is sufficient
to subtract the Tpjp, x% from Tpip, y%.

The benefit of a byte. Some columns may be used by multiple
queries. To compute the caching impact of a column, we need to ag-
gregate the execution speed-up it will allow across multiple queries.
However, as the column participates in multiple pipelines, even if
it is fully in-memory it may have to wait for other columns of the
same pipeline to be loaded and vice-versa. Thus, to allow estimating
the impact, we rely on a finer-grained granularity that builds the
end-to-end execution time model based on per-column-per-pipeline
time estimates. To build the time estimates we need to subdivide the
time estimate of the previous paragraph to column granularity. We
approximate this division by splitting Tp, x% across the columns
based on their relative sizes.

(1)

Tpip,x% = max

4.2 A Balanced Model

To provide a memory efficient caching configuration we model
the expected execution time and the expected memory budget and
formulate two optimizations problems — one to optimize for the
execution time given a memory footprint, and one to optimize
the memory footprint given a slowdown budget. Due to space
constraints, our description focuses on the former, but the same
principles apply to the latter.

Modeling as a flow. To decouple modeling from hyperparame-
ter tuning, such as retrieving Tpip, mem and whether future or past
queries are available, we generalize the problem formulations and
model execution of L queries, which can be either future or past
ones — and we optimize execution across these L queries.

To calculate the total execution time (T) over these L queries, we
split the queries into pipelines and for each pipeline, we sum the
time for the various participating columns. The summation across
pipelines is supported by the fact that pipelines execute one after
the other, while the summation across columns is valid because
the accredited per-column times already split the execution time
based on column size. Similarly, based on the caching ratios, we can

!We use x both as a percentage, in the form 70%, in subscript, and as a proportion, in
the form 0.7, within equations
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compute the in-memory space C (x%) of having the corresponding
proportions cached in-memory.

For example, for two queries Q4 and Qp, that have a single
pipeline each and they touch columns {i, j} and {j, k}, respectively,
we approximate the total execution time as:

- i J J k
Txi’j’k% = max (TpipA,xi%’ TpipA,Xj%) +max (TpipB,Xj%’ TpipB,xk%)
)
by making the approximation that:
) _ i J
Tpipa,x; ;% = max (TpipA,xi%’TpipA,x_,-%) ®)

because a pipeline’s throughput will be bottle necked by the column
with the lowest available access bandwidth. For example, if the
query is IO bound and column i is on disk while j is in memory, the
query will process only as fast as column j can be read from disk.
Note that shared columns share cache proportions (e.g., x3%). Also,
while the methodology could model cold caches, this formulation
is optimized for query repetitions and thus ignores cold cache cases
such as column b being fully on disk before Q4, but brought into
the cache before Qp starts.

The above formulation of Txy, allows for capturing i) the impact
of different configurations, ii) the shared caching proportions across
queries, and iii) the frequency-based importance of each query, as
queries that repeat multiple times in the L window will appear
multiple times in the summation.

Static tuning & optimization. To provide an efficient configu-
ration, HPCache sets up and solves a minimization problem that
finds the x% that minimizes Ty, subject to C (x%) < B, where B
is the memory budget. We solve the optimization problem using a
convex optimizer. The optimal configuration x% is then provided
to the buffer pool. The buffer pool maintains a list of data pages
for each column. Whenever the allocation of a column is full and it
requires space for a new data page, it evicts a page from the same
column. The execution engine requests data pages from the buffer
pool as it would do for any other caching policy.

4.3 Continuous Tuning

HPCache tracks query execution as it evolves, continuously adapt-
ing the caching configuration by taking into consideration the
recent query and performance history. Furthermore, HPCache con-
tinuously monitors the query execution to tune its estimates of the
inferred Py,, for the currently executing pipeline.

Looking back. The above model optimizes the execution across
L queries. This allows HPCache to optimize for future as well as past
queries. In the default case, though, HPCache uses L —1 past queries
combined with the current query to decide a new caching configu-
ration. For the past queries, it estimates Pp,,, based on the pipeline
execution times. However, HPCache does not fix the caching ratios
of the previous queries. Instead, it allows re-optimizing and reduc-
ing or increasing them based on incoming queries — essentially it
optimizes them under the assumption that a similar pattern as the
last L — 1 queries will repeat next.

Monitoring & inspection. In general, it is hard to predict Py,
reliably for each pipeline. Instead, HPCache estimates Py, during
query execution. In each pipeline invocation, the pipelines of inter-
est receive a set of input blocks corresponding with one block per

DaMoN’22, June 13, 2022, Philadelphia, PA, USA

accessed attribute. The execution engine reports to HPCache the
execution time for each pipeline invocation after the input pages
are present in memory. We can then calculate an estimate of Pp,,
from the pages per second that the pipeline is processing and the
known input size of the pipeline. Since many instances of the same
pipeline run in parallel, we assume that pipeline processing time is
equally distributed across threads.

HPCache uses the estimate of Py,, along with the execution
times of the previous queries as inputs for the optimization problem
formulated in Section 4.2. HPCache re-solves the problem inter-
mittently in a background thread using the latest statistics, both
refining its estimated Py,,, for the current pipeline and the over-
all optimal column proportions. The new optimal configuration is
continuously supplied to the buffer pool as a maximum number
of pages to cache for each column. If some columns exceed their
maximum allocations in the new configuration, then the buffer
manager moves pages from the over-represented column into a
global free list. Free list pages are evicted first to make room for
new pages. While pages are in the free list, they are still available
to threads requesting them until they are evicted.

5 EVALUATION

We implement HPCache in Proteus [11, 21, 29], a parallel in-memory
analytical engine that uses code generation. For all IO, we use
the read system call with files opened using the O_DIRECT flag to
bypass the operating system buffer cache. We use 2 MiB pages,
which allows us to use 2 MiB hugepages. We use the CVXPY [1, 14]
library to solve the optimization problem outlined in Section 4.3.

Methodology. The experiments run on a dual socket server
with 376GB DRAM. Each socket is a 12-core Intel Xeon Gold 5118
CPU at 2.3GHz. The CPUs are connected by 2 UPI links. The server
is equipped with four NVMe drives, 3 Samsung MZPLL1T6HAJQ-
00005 and 1 Dell Express Flash PM1725a, measuring 4970MiB/s and
5780MiB/s read bandwidth, respecively. Single-drive experiments
use the single Dell drive. We use the Star Schema Benchmark [28],
with scale factor 1000, resulting in 24 GB per binary lineorder
column. All queries use 48 threads.

5.1 Micro Benchmarks

Proportional Caching. Figure 5 evaluates the relationship be-
tween storage bandwidth and the amount of input data that needs
to be cached in memory to achieve peak query performance. We
run SSB Q2.1 and vary the percentage of the input columns that are
memory resident before the query begins from 0% to 100%. When
data is fully loaded in memory, this query has a throughput of
14.7 GB/s, which is between the bandwidth of using 2 and 4 drives
on our server. The 1 and 2 drive experiments execute in 16.5 and
9.8 seconds, respectively, as the available storage bandwidth is the
initial bottleneck. There is a linear decrease in execution time as
the proportion of data in memory increases in the 1 and 2 drive
case. In the 4 drive case, there is never a benefit to caching data in
memory as the query is never bottlenecked by storage bandwidth.
As the storage bandwidth increases, the proportion of data that
needs to be in memory before achieving the minimum execution
time decreases. Further, once storage bandwidth exceeds query
throughput, there is no benefit to caching any data in memory.
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Figure 8: Two queries with disjoint sets of input columns,
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Predicted Execution Times. Figure 6 and Figure 7 evaluate
the accuracy of the run-time estimates of the pipeline execution
times for SSB Q1.1 and SSB Q2.2 respectively. SSB Q1.1 is an input-
access-sensitive query, while SSB Q2.2 is a processing-sensitive
query. We choose these two queries because we want to evaluate
our model on both input-access-sensitive and processing-sensitive
queries. Each query is run with a warm cache and an input memory
budget of 25 GB - approximately ! /4 of its working set. SSB Q1.1
has two main pipelines. The first, shorter pipeline selects from
the dimension table to build a hashtable for a hash join, and the
second selects from the fact table and probes the hashtable. The
build pipeline only consumes 4 pages of data and completes too
quickly for HPCache to estimate execution times, so HPCache
does not attempt to optimize that pipeline’s inputs. SSB Q2.2 is
similar, but has three small build pipelines. Hence, the predictions
are solely for the probe pipeline of each query. We plot the pipeline
execution time predictions made while the pipeline is executing
as per Equation 1 as well as the in-memory run time predictions
(%) as per Section 4.3. Further, we also plot, with dashed lines,
the actual run time of the pipelines with i) 25 GB memory budget,
and ii) a fully in-memory execution.

While HPCache slightly underestimates the processing through-
put for in-memory data, its consistent nature means it has mini-
mal effect on the actual cache configuration. Since the Q1.1 probe
pipeline is a input-access-sensitive pipeline, the predicted HPCache
time is based on the storage and memory-bandwidth. In contrast to
Q1.1, Q2.2 is processing-sensitive, so the current run-time predic-
tion and the in-memory prediction are identical and are both based
on the pipeline’s predicted maximum throughput. The prediction
model consistently underestimates the real execution time, both for
the currently executing query and for the in-memory case. It does
not account for the time to open or close the pipelines. Additionally,
the in-memory predictions assume that all 48 logical cores are only
processing the pipeline. It does not account for anything else uti-
lizing the CPU, such as the background prediction thread, and the
overhead of looking up pages in the buffer pool. Further, the actual
HPCache execution time of Q2.2 slightly exceeds the in-memory
time due to the overhead for the storage IO management.
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Figure 9: MRU versus HPCache on the full SSB.

Alternating Queries with Disjoint Input Columns. Figure 8
demonstrates the run-time adaptivity of proportional caching. We
alternatively run two queries, each three times. Each query has
throughput greater than storage bandwidth; the first has a through-
put of 32 GB/s and the second 40 GB/s. We repeat the experiment 5
times and report the average. We compare HPCache with a most
recently used eviction policy. There is a distinct plateau for MRU
between 80 GB and 100GB; this is because at this point MRU has
already cached enough data for the first query such that it is no
longer input bandwidth bound, but has not cached any data for
the second query which is still input bandwidth bound. The MRU
execution time then starts improving again after 100 GB as it starts
caching input data for the second query. This contrasts with HP-
Cache which adapts to the workload and caches input data that
most speeds up both queries, and does so more consistently as the
memory budget increases. MRU converges to HPcache when the
full working set fits in memory, but HPcache outperforms MRU
in this experiment for all the cases as it uses the budget more ef-
ficiently. With a memory budget of 100 GB, HPCache achieves a
speed up of 15.6% compared to MRU.

5.2 SSB: a stress test

Figure 9 shows the performance of HPCache and a MRU caching
policy on the full SSB for varying memory budgets. We measure
total execution by running each query once in order starting from a
cold cache. For each configuration, we run the experiment 5 times,
clearing the cache before each iteration, and report the average. The
order of queries in the SSB is beneficial to MRU, because the three
most input-access-sensitive queries, Q1.1, Q1.2 and Q1.3 (which
share the same input columns) are the first three queries in the
benchmark. For memory budgets greater than 160 GB, that are
comparable in size to the working set of all of the queries, MRU
slightly outperforms HPCache. Both HPCache and MRU reduce the
execution time as the memory budget increases: inputs are cached
for several of the SSB queries that are input-access-sensitive. The
performance improvements of both flatten out at around 150 GB
as at this point, enough input data are cached such that the input-
access-sensitive queries are no longer bottlenecked by loading their
inputs. With a memory budget of 20 GB HPCache achieves same
performance as MRU with a budget of 80 GB.
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6 BACKGROUND & RELATED WORK

0OS-assisted buffer pools. Due to the difficulty of implementing an
efficient buffer pool, systems have often abandoned buffer pools al-
together and instead relied on the operating system kernel’s paging
capabilities, often through mmap; for example, MonetDB relies on
memory-mapped IO to support larger than memory datasets [5, 18].
Memory-mapped IO offloads a significant part of the buffer pool
implementation to the OS and offers hardware-assisted page-fault
handling. However, memory-mapped IO also reduces the control
that the database engines have over buffer management and can
even result in sufficient contention and reduced prefetching that
prevents the database engine from saturating NVMe arrays [12].
Optimizing buffer pool accesses. Providing persistency and
support for out-of-memory data traditionally introduces two over-
heads with respect to the buffer pool. First, having a centralized
buffer pool creates a point of contention [19]. Second, persistency
requires a level of indirection when translating in-memory ref-
erences to out-of-memory object references. Graefe et al. [17]
use pointer swizzling to eliminate buffer pool overheads when
all data fits in memory. Pointer swizzling dereferences page ref-
erences and replaces swizzled pointers with in-memory pointers.
By avoiding a hashtable, they avoid a costly central point of con-
tention. LeanStore [22] extends on pointer swizzling by specula-
tively unswizzling pages, which keeps hot pages in memory with-
out explicitly tracking page accesses in shared data structure. Um-
bra [26] extends LeanStore with support for variable length buffer
frames, improving handling of large objects. Overall, optimizing
buffer pool accesses reduces the overhead imposed on mostly-in-
memory analytics while adding support for out-of-memory data.
In contrast, HPCache improves the cache efficiency with respect to
the performance gains achieved by caching data in memory.
Buffer pool eviction policies. Apart from handling larger-
than-memory datasets, buffer pools promise efficient in-memory
data caching. Multiple eviction policies have been proposed to in-
crease the cache hit frequency, using the databases’ access patterns,
such as partitioning the buffer pool by relation [34], or into priority
or access patterns zones and using an access pattern-optimized
eviction policy inside each partition [27, 30]. Partitions are sized
based on the expected performance benefit. Other approaches pro-
vide each query with a buffer large enough for the queries modelled
hotset of pages [31]. LRU and MRU are used to increase the hit
chance inside each partition, with second-chance eviction poli-
cies like 2Q reducing the cache pollution [20]. However, directly-
attached NVMe arrays provide significant bandwidth to make data
scans competitive to query execution times. Instead of relying on
frequency-based cache eviction, HPCache takes into consideration
the overall benefit of data caching and prioritizes caching of high-
benefit data over frequently-loaded but low-benefit inputs.
Heterogeneous storage. The multitude of available storage
devices provides a rich spectrum of performance and budget trade-
offs. Do et.al [15] reduce the computational cost of log-structured
storage by offloading the computation required for garbage col-
lection and recovery onto computational SSDs. Mosaic [35] is a
storage engine specialized for scan-heavy workloads. It calculates
performance-budget Pareto-optimal data placements for data resid-
ing across multiple types of storage devices. Mosaic uses workload
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traces to model column-granular data placement as an optimization
problem and solves it offline using linear optimization. Borovica
et al. [8] propose Skipper, an execution framework optimized for
cold storage devices (CSD): as CSD can result in high delays when
accessing data from powered off disks, Skipper uses out-of-order
execution to codesign the execution order and disk requests to hide
unnecessary latencies. Both Skipper and Mosaic optimize the per-
formance and cost of analytics on scan-heavy workloads, assuming
the storage medium is the bottleneck. In contrast, in this work, we
focus on improving analytical response times over high-bandwidth,
directly attached NVMes.

7 CONCLUSION

In this paper we show that i) caching pages that are accessed with
the same frequency can yield significantly different query accel-
eration results, and ii) optimizing the memory footprint requires
partial column caching to avoid diminishing returns. We proposed
HPCache, an eviction policy and tuning agent that optimizes the
caching decisions of the buffer pool for analytical workloads on
high-bandwidth storage. HPCache both inspects query execution to
predict caching benefits and automatically tunes page caching pri-
ority. HPCache improves the efficiency of in-memory data caching
for analytics, allowing faster query execution time and improved
NVMe bandwidth utilization for a given memory budget. HPCache
achieves up to a 12% speed up or 4x reduction in memory utilization
compared to a MRU eviction policy.
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